Equivalences between fusion systems of finite groups of Lie type - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Equivalences between fusion systems of finite groups of Lie type

Résumé

We prove, for certain pairs G,G' of finite groups of Lie type, that the $p$-fusion systems F_p(G) and F_p(G') are equivalent. In other words, there is an isomorphism between a Sylow p-subgroup of G and one of G' which preserves p-fusion. This occurs, for example, when G=H(q) and G'=H(q') for a simple Lie "type" H, and q and q' are prime powers, both prime to p, which generate the same closed subgroup of p-adic units. Our proof uses homotopy theoretic properties of the p-completed classifying spaces of G and G', and we know of no purely algebraic proof of this result.
Fichier principal
Vignette du fichier
bmo1.pdf (301.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00308742 , version 1 (01-08-2008)

Identifiants

  • HAL Id : hal-00308742 , version 1

Citer

Carles Broto, Jesper Møller, Bob Oliver. Equivalences between fusion systems of finite groups of Lie type. 2008. ⟨hal-00308742⟩
255 Consultations
111 Téléchargements

Partager

More