Diamond representations of rank two semisimple Lie algebras - Archive ouverte HAL
Article Dans Une Revue Journal of Lie Theory Année : 2009

Diamond representations of rank two semisimple Lie algebras

Boujemaa Agrebaoui
  • Fonction : Auteur
  • PersonId : 851768
Olfa Khlifi
  • Fonction : Auteur
  • PersonId : 851769

Résumé

The present work is a part of a larger program to construct explicit combinatorial models for the (indecomposable) regular representation of the nilpotent factor $N$ in the Iwasawa decomposition of a semi-simple Lie algebra $\mathfrak g$, using the restrictions to $N$ of the simple finite dimensional modules of $\mathfrak g$. Such a description is given in \cite{[ABW]}, for the cas $\mathfrak g=\mathfrak{sl}(n)$. Here, we give the analog for the rank 2 semi simple Lie algebras (of type $A_1\times A_1$, $A_2$, $C_2$ and $G_2$). The algebra $\mathbb C[N]$ of polynomial functions on $N$ is a quotient, called reduced shape algebra of the shape algebra for $\mathfrak g$. Basis for the shape algebra are known, for instance the so called semi standard Young tableaux (see \cite{[ADLMPPrW]}). We select among the semi standard tableaux, the so called quasi standard ones which define a kind basis for the reduced shape algebra.
Fichier principal
Vignette du fichier
ssrank2.pdf (349.6 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00300612 , version 1 (21-07-2008)

Identifiants

Citer

Boujemaa Agrebaoui, Didier Arnal, Olfa Khlifi. Diamond representations of rank two semisimple Lie algebras. Journal of Lie Theory, 2009, 19 (2), pp.339-370. ⟨hal-00300612⟩
102 Consultations
133 Téléchargements

Altmetric

Partager

More