Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle
Résumé
The ice sheet-climate interaction as well as the climatic response to orbital parameters and atmospheric CO2 content are examined in order to drive an ice sheet model throughout an ice age cycle. Feedback processes between ice sheet and atmosphere are analyzed by numerical experiments using a high resolution General Circulation Model (GCM) under different conditions at the Last Glacial Maximum. Among the proposed processes, the ice albedo feedback, the elevation-mass balance feedback and the desertification effect over ice sheet were found to be the dominant processes for the ice-sheet mass balance. The temperature lapse rate over the ice sheet is proposed to be about 5 °C km?1, which is weaker than assumed in other studies. Within the plausible range of parameters related to these processes, the ice sheet response to orbital parameters and atmospheric CO2 content for the last glacial/interglacial cycle was simulated in terms of both ice volume and geographical distribution, using a three-dimensional ice-sheet model. Careful treatment related to climate-ice sheet feedback is essential for a reliable simulation of ice sheet changes during ice age cycles.
Origine | Accord explicite pour ce dépôt |
---|
Loading...