Determine the source term of a two-dimensional heat equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Determine the source term of a two-dimensional heat equation

Résumé

Let $\Omega$ be a two-dimensional heat conduction body. We consider the problem of determining the heat source $F(x,t)=\varphi(t)f(x,y)$ with $\varphi$ be given inexactly and $f$ be unknown. The problem is nonlinear and ill-posed. By a specific form of Fourier transforms, we shall show that the heat source is determined uniquely by the minimum boundary condition and the temperature distribution in $\Omega$ at the initial time $t=0$ and at the final time $t=1$. Using the methods of Tikhonov's regularization and truncated integration, we construct the regularized solutions. Numerical part is given.
Fichier principal
Vignette du fichier
heat_2d.pdf (298.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00295103 , version 1 (11-07-2008)

Identifiants

Citer

Dang Duc Trong, Truong Trung Tuyen, Phan Thanh Nam, Alain Pham Ngoc Dinh. Determine the source term of a two-dimensional heat equation. 2008. ⟨hal-00295103⟩
400 Consultations
114 Téléchargements

Altmetric

Partager

More