Algèbres et cogèbres de Gerstenhaber et cohomologie de Chevalley-Harrison
Résumé
The fundamental example of Gerstenhaber algebra is the space $T_{poly}({\mathbb R}^d)$ of polyvector fields on $\mathbb{R}^d$, equipped with the wedge product and the Schouten bracket. In this paper, we explicitely describe what is the enveloping $G_\infty$ algebra of a Gerstenhaber algebra $\mathcal{G}$. This structure gives us a definition of the Chevalley-Harrison cohomology operator for $\mathcal{G}$. We finally show the nontriviality of a Chevalley-Harrison cohomology group for a natural Gerstenhaber subalgebra in $T_{poly}({\mathbb R}^d)$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...