On ill-posedness for the one-dimensional periodic cubic Schrodinger equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

On ill-posedness for the one-dimensional periodic cubic Schrodinger equation

Résumé

We prove the ill-posedness in $ H^s(\T) $, $s<0$, of the periodic cubic Schrödinger equation in the sense that the flow-map is not continuous from $H^s(\T) $ into itself for any fixed $ t\neq 0 $. This result is slightly stronger than the one in \cite{CCT2} where the discontinuity of the solution map is established. Moreover our proof is different and clarifies the ill-posedness phenomena. Our approach relies on a new result on the behavior of the associated flow-map with respect to the weak topology of $ L^2(\T) $.
Fichier principal
Vignette du fichier
illposedness6.pdf (187.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00291648 , version 1 (27-06-2008)
hal-00291648 , version 2 (02-07-2008)

Identifiants

Citer

Luc Molinet. On ill-posedness for the one-dimensional periodic cubic Schrodinger equation. 2008. ⟨hal-00291648v1⟩
137 Consultations
126 Téléchargements

Altmetric

Partager

More