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ON ILL-POSEDNESS FOR THE ONE-DIMENSIONAL

PERIODIC CUBIC SCHRODINGER EQUATION

LUC MOLINET

Abstract. We prove the ill-posedness in Hs(T), s < 0, of the
periodic cubic Schrödinger equation in the sense that the flow-map
is not continuous from Hs(T) into itself for any fixed t 6= 0. This
result is slightly stronger than the one in [7] where the discontinuity
of the solution map is established. Moreover our proof is different
and clarifies the ill-posedness phenomena. Our approach relies on a
new result on the behavior of the associated flow-map with respect
to the weak topology of L2(T).

1. Introduction

In this work we are interested in the failure of well-posedness in some
spaces of rough functions for the one dimensional cubic Schrödinger
equation in the periodic setting. Throughout this paper we will say
that a Cauchy problem is (locally) well-posed in some normed function
space X if, for any initial data u0 ∈ X, there exist a radius R > 0,
a time T > 0 and a unique solution u , belonging to some space-time
function space continuously embedded in C([0, T ]; X), such that for
any t ∈ [0, T ] the map u0 7→ u(t) is continuous from the ball of X
centered at u0 with radius R into X. A Cauchy problem will be said
to be ill-posed if it is not well-posed.

Let us recall that the cubic Schrödinger equation reads

(1) iut + uxx + γ|u|2u = 0,

where γ 6= 0 is a real number. In the one-dimensional periodic setting,
u = u(t, x) is a function from R × T to C where T := R/2πZ. Note
that this equation is completely integrable (cf. [1]) even if we will not
directly exploit this particularity.

It is well-known that this equation enjoys two symmetries. Namely,
the dilation symmetry : u(t, x) 7→ λu(λ2t, λx) and the Galilean invari-

ance : u(t, x) 7→ eiαx/2e−iα2t/4u(t, x−αt). Recall that to each equation
that enjoys a dilation symmetry, one can associate a so called critical
scaling Sobolev index sc. This is the index of the homogeneous Sobolev
space on the line whose semi-norm remains invariant by the dilation
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symmetry of the equation. It is commonly conjectured (at least when
working on R or T) that an equation must be ill-posed in Hs as soon
as s < sc (However, as far as the author knows, there exists no general
proof of this fact). On the other hand, one can expect that the equa-
tions are well-posed above sc. This is indeed the case for a large class of
parabolic equations as the dissipative Burgers equation, on R or T, and
for dispersive equations as the nonlinear Schrödinger equation on RN

and the generalized Korteweg-de Vries equation on R with L2-critical
or L2-supercritical nonlinearity.

For the cubic Schrödinger equation sc = −1/2 and well-posedness is
known to hold in Hs(R) and Hs(T) for s ≥ 0 (see [10] on R and [3]
on T). However, as we mentioned, there exists another symmetry, the
Galilean invariance, for which the critical index is 0. This suggests that
this equation may be ill-posed in Hs as soon as s < 0. A first step in this
direction was due to Bourgain ([4]) who observed that for a wide class
of dispersive equations there exists a critical index s∞c > sc below which
the flow-map of the equation (if it exists) cannot be smooth whereas it
is real analytic1 above. For the cubic Schrödinger equation on R or T,
this approach shows that the flow-map (if it exists) cannot be of class
C3 as soon as s < 0, i.e. s∞c = 0. A second step was initiated by Kenig-
Ponce and Vega ([9]) who discovered that more qualitative ill-posedness
phenomena can occur above sc for dispersive equations on the line.
They observed that the lack of uniform continuity on bounded set of the
flow-map associated with some canonical focusing dispersive equations,
including the cubic focusing Schrödinger equation, can be proven below
s∞c by using a two parameter family of exact solutions. Using the same
idea, Burq-Gerard-Tzvetkov (cf. [5]) noticed that the one-dimensional
periodic cubic Schrödinger equation (1) cannot be uniformly continuous
on bounded set below L2. The proof is based on the fact that the
solution emanating from the initial data αeinx is explicitly given by

(2) u(t, x) = α exp
(
−it(n2 − γα2)

)
einx .

In the same paper, they proved the same type of results on the sphere
by constructing approximate solutions.

1For dispersive periodic equations whose nonlinear term is of the form uqux the
smoothness of the flow-map holds not for the original equation but for the equation

satisfied by ũ(t, x) = u(t, x −
∫ t

0

∫
− uq). Therefore the non-smoothness of the flow-

map has to be shown on this last equation. Note, however, that for q = 1, since
the mean-value of u is conserved, the smoothness of the flow-map associated with
ũ ensures the smoothness of the flow-map associated with the original equation on
hyperplans of functions with a given mean-value.
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In [6], Christ-Colliander and Tao also exploited the construction of
approximate solutions in order to extend the result of [9] in the case of
defocusing equations as well as in the periodic case. Finally, very re-
cently, they proved in [7] an ill-posedness result for the one dimensional
periodic cubic Schrödinger equation below L2(T) in the sense that the
solution map associated with this equation (defined on L2(T)) cannot
be continuously extended in Hs(T) with values in C([0, T ]; Hs(T)) as
soon as s < 0. The main point is the construction of approximate solu-
tions corresponding to initial data that are supported on two different
modes : the mode 0 plus a mode going to infinity.
In this work we give a proof of the ill-posedness of (1) below L2(T)
in the strong sense stated in the beginning of the introduction. Our
improvement with respect to the result of [7] is that we show the dis-
continuity of the flow-map for any fixed t 6= 0 instead of showing the
discontinuity of the the solution map. Moreover our approach is dif-
ferent and relies on the lack of continuity for the L2(T)-weak topology
of the flow-map associated with this equation. It does not exploit the
existence of exact or approximate solutions. The main idea is to notice
that the nonlinear term of the cubic Schrödinger equation can be split
into two terms. One which enjoys a good behavior with respect to the
weak convergence in the resolution space. The other which is of the
form g(

∫
T
|u|2)u. Since

∫
T
|u|2 is a constant of the motion for (1), this

will lead to the lack of weak continuity in L2(T) for the flow-map. Note
that this approach does not work for the equation posed on the line.
Indeed, it was recently proved in [8] that the flow-map associated with
the cubic Schrödinger equation is continuous in L2(R) endowed with
the weak topology, even if s∞c = 0. It is also interesting to notice that
our result uses in a crucial way the well-posednes of the equation in
L2(T) which is the critical space for C∞-well-posedness. Let us note
that the use of the well-posedness result in the critical space in order to
prove ill-posedness appears also in [2]. Finally we would like to mention
that we strongly believe that the approach developed in this paper can
also lead to the ill-posedness of the periodic Benjamin-Ono equation
below L2(T).

1.1. Main results. Our ill-posedness result is a straightforward corol-
lary of the following theorem.

Theorem 1.1. Let {u0,n} be a sequence of L2(T) converging weakly, but
not strongly, to u0 in L2(T) and let {un} be the sequence of associated
solutions of the cubic Schrödinger equation (1). For any adherence
value α2 ∈ R+ of

∫
T
|u0,n|

2 (at least one such value must be differ-
ent from

∫
T
|u0,n|

2 ) and any increasing sequence of integers {nk} such
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that
∫

T
|u0,nk

|2 converges to α2, the sequence unk
(t) converges weakly in

L2(T) to

vα(t) = exp
(iγ

π
(α2 −

∫

T

|u0|
2)t

)
u(t)

for all t ∈ R, where u ∈ C(R; L2(T)) is the (unique) solution to (1)
emanating from u0.

Remark 1.2. As we already mentioned, in [5] Burg-Gerard-Tzvetkov
studied sequences of initial data that are supported on one single mode
going to infinity whereas in [6] Christ-Colliander-Tao studied a se-
quence of initial data that are supported on two different modes : the
mode 0 plus a mode going to infinity. These sequences are bounded in
Hs(T), s < 0, but not in L2(T). Therefore, we cannot re-examine them
with the help of Theorem 1.1. However, we can observe what happens
with sequences of initial data having the same support properties.
Sequences of the type u0,n = αne

inx, with {αn} bounded, converge weakly
to 0 in L2(T) and Theorem 1.1 ensures that the corresponding sequences
of emanating solutions tend weakly in L2(T) to 0 for any t ∈ R. Of
course this implies the strong convergence to 0 in any Hs for s < 0.
It is thus clear that this type of counter-examples cannot disprove the
continuity of the flow-map.
Observe now what happens with a sequence of the type u0,n = β1+β2e

inx.
This sequence tends weakly to u0 ≡ β1 in L2(T) and for any n ∈ N∗

it holds ‖u0,n‖
2
L2 = 2π(|β1|

2 + |β2|
2). The solution of (1) emanating

from u0 = β1 is explicitly given by u(t) = β1 eitγ|β1|2t. On the other
hand, Theorem 1.1 ensures that the sequence of emanating solutions
{un} tends weakly in L2(T) and thus strongly in Hs(T), s < 0, for any

fixed t ∈ R toward v(t) = β1 e2iγ(|β1|2+|β2|2)t. Since

|v(t) − u(t)| ≥ |β1|
∣∣∣1 − ei2γ|β2|2t

∣∣∣ ≥ |γ||β1||β2|
2t

for t > 0 small enough, this ensures that the flow-map is not continuous
at u0 = β1 for the Hs(T)-topology as soon as s < 0.

Remark 1.3. We strongly believe that Theorem 1.1 is interesting by
its own and not only as a tool to prove ill-posedness. For instance, in
a forthcoming paper we will use a variant of this theorem to prove the
existence of a compact global attractor in L2(T) for the weakly damped
Schrödinger equation

ut + iuxx + εu + i|u|2u = f

where ε > 0 is the damping parameter and where the external forcing
f , that is independent of t, belongs to L2(T). See [8] for the case on
the line.
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As a consequence of Theorem 1.1 we get that the flow-map of (1) is
not continuous for the weak L2(T)-topology. The ill-posedness, in the
strong sense stated in the introduction, of (1) in Hs(T), s < 0, follows
directly (see Remark 1.5 below).

Corollary 1.4. For any t 6= 0, the flow-map associated with the pe-
riodic cubic Schrödinger equation (1) is discontinuous as a map from
L2(T), equipped with its weak topology, into the space of distributions
(C∞(T))∗ at any point u0 ∈ L2(T) different from the origin.

Remark 1.5. Let B be any topological space continuously embedded in
the space of distributions (C∞(T))∗ and such that L2(T) is compactly
embedded in B. Note that this is obviously the case of Hs(T) as soon
as s < 0. Corollary 1.4 proves the discontinuity of the map u0 7→ u(t)
from B into B at any u0 ∈ L2(T) different from the origin and for any
fixed t 6= 0 .

Proof of Corollary 1.4. Let u0 ∈ L2(T) different from 0 and let
{φn} ⊂ L2(T) be a sequence such that φn ⇀ 0 in L2(T) and ‖φn‖

2
L2 →

2πθ2, θ ∈ R∗, as n goes to infinity (one can take for instance φn =
θeinx). Setting u0,n = u0 + φn, we get that u0,n ⇀ u0 in L2(T) and
‖u0,n‖

2
L2 → ‖u0‖

2
L2 + 2πθ2 as n → ∞. On account of Theorem 1.1, the

emanating solutions un tend weakly in L2(T) for any fixed t ∈ R to

v(t, x) = ei2γθ2tu(t, x). Observing that

(3) |v(t, x) − u(t, x)| = |1 − ei2γθ2t||u(t, x)|

and that, u0 6= 0 ensures that u(t) 6= 0 for any t ∈ R, we infer that

v(t) 6= u(t) in (C∞(T))∗, ∀t 6∈ {
kπ

γθ2
, k ∈ Z} ,

Fixing t 6= 0 and choosing θ such that t 6∈ { kπ
γθ2 , k ∈ Z}, the disconti-

nuity at u0 of the map u0 7→ u(t), from L2(T) equipped with its weak
topology into (C∞(T))∗, follows.

2. Proof of Theorem 1.1

Let us first introduce some notations and function spaces we will
work with. For a 2π-periodic function ϕ, we define its space Fourier
transform by

ϕ̂(k) :=
1

2π

∫

T

e−ikx ϕ(x) dx, ∀k ∈ Z
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and denote by V (·) the free group associated with the linearized Schrödinger
equation,

V̂ (t)ϕ(k) := e−ik2t ϕ̂(k), k ∈ Z .

The Sobolev spaces Hs(T) for 2π-periodic functions are defined as usu-
ally and endowed with

‖ϕ‖Hs(T) := ‖〈k〉sϕ̂(k)‖l2(Z) = ‖Js
xϕ‖L2(T) ,

where 〈·〉 := (1 + | · |2)1/2 and Ĵs
xϕ(k) := 〈k〉sϕ̂(k).

For a function u(t, x) on T2, we define its space-time Fourier transform
by

û(q, k) := Ft,x(u)(q, k) :=
1

(2π)2

∫

T2

e−i(qt+kx) u(t, x), ∀(q, k) ∈ Z
2

and define the Bourgain spaces Xb,s and X̃b,s of functions on T2 en-
dowed with the norm

(4) ‖u‖Xb,s := ‖〈q + k2〉b〈k〉sû‖l2(Z2) = ‖〈q〉b〈k〉sFt,x(V (−t)u)‖l2(Z2)

and

(5) ‖u‖X̃b,s := ‖〈q − k2〉b〈k〉sû‖l2(Z2) = ‖〈q〉b〈k〉sFt,x(V (t)u)‖l2(Z2) .

For a function u(t, x) on R×T, we define its space-time Fourier trans-
form by

û(τ, ξ) := Ft,x(u)(τ, ξ) :=
1

2π

∫

R×T

e−i(τt+kx) u(t, x)dt dx, ∀(τ, k) ∈ R×Z .

and define the Bourgain spaces Xb,s
R

of functions on R × T endowed
with the norm

‖u‖Xb,s
R

:= ‖〈τ+k2〉b〈k〉sû‖L2(R;l2(Z)) = ‖〈τ〉b〈k〉sFt,x(V (−t)u)‖L2(R;l2(Z)) .

Finally, for T > 0 we define the restriction in time spaces Xb,s
T of

functions on ] − T, T [×T endowed with the norm

‖u‖Xb,s
T

:= inf
v∈Xb,s

{‖v‖Xb,s, v(·) ≡ u(·) on ] − T, T [ } .

whenever 0 < T ≤ 1 and

‖u‖Xb,s
T

:= inf
v∈Xb,s

R

{‖v‖Xb,s
R

, v(·) ≡ u(·) on ] − T, T [ } .

whenever T > 1.

As indicated in the introduction we will use in a crucial way the
well-posedness theorem of (1) in L2(T). So let us recall this theorem
proven by Bourgain in [3].
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Theorem 2.1. Let s ≥ 0. For any u0 ∈ Hs(T) and any T > 0, there
exists a unique solution

u ∈ L4(] − T, T [×T)

of (1). Moreover u ∈ C([−T, T ]; Hs(T)) ∩ X
1/2,s
T and the map data to

solution u0 7→ u is real analytic from Hs(T) to C([−T, T ]; Hs(T)).

This theorem principally use the linear estimates in Bourgain’spaces
for the free evolution and the retarded Duhamel operator

(6) ‖U(t)ϕ‖
X

1/2,s
T

≤ C(T )‖ϕ‖Hs

and for any 0 < ε << 1,

(7) ‖

∫ t

0

U(t − t′)f(t′) dt′‖
X

1/2,s
T

≤ C(T, ε)‖f‖
X

−1/2+ε,s
T

,

as well as the following periodic estimate to treat the nonlinear term
(see [3]):

(8) ‖v‖L4(T2) . ‖v‖X3/8,0 , ∀v ∈ X3/8,0 .

It is worth noticing that this ensures that for 0 < T < 1 it holds

(9) ‖U(t)ϕ‖L4(]−T,T [×T) . T 1/8‖ϕ‖L2(T), ∀ϕ ∈ L2(T) .

The fact that the time of existence in Theorem 2.1 can be chosen
arbitrarly large follows from the conservation of the L2-norm of the
solution. Note finally that excepting the fact that the solution belongs

to X
1/2,s
T , the remaining of the theorem can be proven for small data

by using only the following Zygmund’s type estimate (see again [3]),

‖U(t)ϕ‖L4(T2) . ‖ϕ‖L2(T) ,

and TT ∗ classical arguments.
As we indicated in the introduction, we are going to split the nonlin-

ear term |u|2u into different parts. So let us denote by g(·) the trilinear
operator

(10) g(u, v, w) := ūvw
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and decompose it in the following way :

g(u, v, w) =
∑

k1,k2,k3∈Z

̂̄u(k1)v̂(k2)ŵ(k3)e
i(k1+k2+k3)x

=
∑

k1,k3∈Z

̂̄u(k1)v̂(−k1)ŵ(k3)e
ik3x

+
∑

k1,k2∈Z

̂̄u(k1)v̂(k2)ŵ(−k1)e
ik2x

−
∑

k∈Z

̂̄u(k)v̂(−k)ŵ(−k)e−ikx .

+
∑

k1,k2,k3∈Z

(k1+k2)(k1+k3) 6=0

̂̄u(k1)v̂(k2)ŵ(k3)e
i(k1+k2+k3)x .

Note that the three first terms of the above right-hand side correspond
to the resonant part of |u|2u under the Schrödinger flow (see (16) be-
low). Using that ̂̄u(k) = ¯̂u(−k), it is easy to check for that, taking
u = v = w, the sum of the two first terms gives

2
∑

k1,k2∈Z

|û(k1)|
2û(k2)e

ik2x =
1

π
‖u‖2

L2u .

On the other hand, the third term is a good term with respect to the
weak convergence since its mode k contains only modes k or −k of u,
v and w. We thus rewrite g(u) := g(u, u, u) as

(11) g(u) =
1

π
‖u‖2

L2u + Λ1(u, u, u) + Λ2(u, u, u) ,

where

(12) Λ1(u, v, w) :=
∑

k1,k2,k3∈Z

(k1+k2)(k1+k3) 6=0

̂̄u(k1)v̂(k2)ŵ(k3)e
i(k1+k2+k3)x

and

(13) Λ2(u, v, w) := −
∑

k∈Z

̂̄u(k)v̂(−k)ŵ(−k)e−ikx .

Observe that the conjugaison is an isometry from L4(T2) into itself

and that, since v̂1(q, k) = v̂1(−q,−k) for all (q, k) ∈ Z2, it is also an

isometry from X3/8,0 into X̃3/8,0. It follows that (8) still holds with
X3/8,0 replaced by X̃3/8,0 and that

(14) ‖F−1(|v̂1|)‖L4(T2) . ‖v1‖X̃3/8,0 = ‖v1‖X3/8,0 .
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Therefore, using suitable extensions of u, v and w , (8) and (14), it is
easy to check that for i = 1, 2 and 0 < T ≤ 1,

(15) ‖Λi(u, v, w)‖
X

−7/16,0
T

. ‖u‖
X

1/2,0
T

‖v‖
X

1/2,0
T

‖w‖
X

1/2,0
T

and thus Λ1 and Λ2 are continuous operators from (X
1/2,0
T )3 to X

−7/16,0
T .

Let us now show that they are also continuous on the same spaces but
equipped with their respective weak topology.

Lemma 2.2. The operator Λ2 is continuous from (X
1/2,0
1 )3 to X

−7/16,0
1

equipped with their respective weak topology.

Proof . Since X
3/8,−1/3
1 is compactly embedded in X

1/2,0
1 , it suffices

to prove that Λ2 is bounded from (X
3/8,−1/3
1 )3 into X

−7/16,−1
1 . But

this is straightforward. Indeed, taking extensions vi ∈ X3/8,−1/3 of

ui ∈ X
3/8,−1/3
1 such that ‖vi‖X3/8,−1/3 ≤ 2‖ui‖X

3/8,−1/3
1

, it holds

‖Λ2(u1, u2, u3)‖X
−7/16,−1
1

. ‖Λ2(v1, v2, v3)‖X−7/16,−1

. sup
‖w‖

X7/16,1=1

∣∣∣
(
w, Λ2(v1, v2, v3)

)
L2(T2)

∣∣∣ .

Setting q = q1 + q2 + q3, (8) and (14) then ensure that
∣∣∣
(
w, Λ2(v1, v2, v3)

)
L2(T2)

∣∣∣ .
∑

(q1,q2,q3,k)∈Z4

|ŵ(q,−k)||v̂1(q1, k)||v̂2(q2,−k)||v̂3(q3,−k)|

. ‖F−1(〈k〉−1/3|v̂1|)‖L4(T2)‖F
−1(〈k〉−1/3|v̂2|)‖L4(T2)

‖F−1(〈k〉−1/3|v̂3|)‖L4(T2)‖F
−1(〈k〉|ŵ|)‖L4(T2)

. ‖w‖X3/8,1

3∏

i=1

‖vi‖X3/8,−1/3 .

Lemma 2.3. The operator Λ1 is continuous from (X
1/2,0
1 )3 to X

−7/16,0
1

equipped with their respective weak topology.

Proof . For the same reasons as above it suffices to prove that Λ1

is bounded from (X
7/16,−1/48
1 )3 into X

−7/16,−1
1 . We proceed as in the

proof of the preceding lemma by introducing extensions vi of ui such
that ‖vi‖X3/8,−1/3 ≤ 2‖ui‖X

3/8,−1/3
1

. Setting k = k1 + k2 + k3, we divide

the region A := {(k1, k2, k3) ∈ Z3 , (k1 + k2)(k1 + k3) 6= 0} of Z3 into
two regions to estimate

I :=
∑

(q1,q2,q3)∈Z3

(k1,k2,k3)∈A

|ŵ(q, k)||v̂1(q1, k1)||v̂2(q2, k2)||v̂3(q3, k3)|
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• The region A1 := {(k1, k2, k3) ∈ A , |k| ≥ 1
4
maxi=1,2,3(|ki|)}. In this

region the result for Λ1 follows exactly the same lines as for Λ2.
• The region A2 := {(k1, k2, k3) ∈ A , |k| < 1

4
maxi=1,2,3(|ki|)}. In this

region we first notice that max(|k1 + k2|, |k1 + k3|) ≥
1
4
max(|ki|) since

otherwise we would have max(|k1 + k2|, |k1 + k3|) < 1
4
max(|ki|) which

is clearly incompatible with |k| < 1
4
maxi=1,2,3(|ki|).

Setting σ = q + k2, σ̃1 = q1 − k2
1, σ2 = q2 + k2

2 and σ3 = q3 + k2
3 with

k = k1 + k2 + k3 and q = q1 + q2 + q3, we get the well-known resonant
relation for the cubic Schrödinger equation :

(16) σ − σ̃1 − σ2 − σ3 = 2(k1 + k2)(k1 + k3) .

This, combining with the fact that min(|k1 + k2|, |k1 + k3|) ≥ 1, ensure
that

max(|σ|, |σ̃1|, |σ2|, |σ3|) & max
i=1,2,3

(|ki|) & max
i=1,2,3

〈ki〉 .

It results that

I/Z3×A2
.

∑

(q1,q2,q3)∈Z3

(k1,k2,k3)∈A2

〈σ〉1/16|ŵ(q, k)|〈σ̃1〉
1/16〈k1〉

−1/48|v̂1(q1, k1)|

3∏

i=2

〈σi〉
1/16〈ki〉

−1/48|v̂i(qi, ki)|

. ‖ F−1(〈σ〉1/16|ŵ|)‖L4(T2)‖F
−1(〈σ̃〉1/16〈k〉−1/48|v̂1|)‖L4(T2)

3∏

i=2

‖F−1(〈σ〉1/16〈k〉−1/48|v̂i|)‖L4(T2)

. ‖w‖X7/16,0

3∏

i=1

‖vi‖X7/16,−1/48

where we used (8) and (14) in the last step.

Let {u0,n} ⊂ L2(T) be a sequence converging weakly but not strongly
to u0 in L2(T) and let {un} be the sequence of emanating solutions. By
the Banach-Steinhaus’theorem, {‖u0,n‖L2} is bounded in R+ and thus
admits at least one adherence value . Since we assume that u0,n 6→ u0

in L2(T), one adherence value at least must be different from ‖u0‖L2.
Let us denote by α ≥ 0 such an adherence value of {‖u0,n‖L2} and let
{‖u0,nk

‖L2} be any subsequence converging towards α. From Theorem
2.1 we know that the corresponding subsequence of solutions {unk

} is

bounded in X
1/2,0
1 and thus, up to the extraction of a subsequence,



ILL-POSEDNESS FOR PERIODIC CUBIC SCHRÖDINGER EQUATION 11

converges weakly to some v in X
1/2,0
1 . Moreover, since the L2-norm is

conserved for un, we infer that

un(t) = V (t)u0,n − γ

∫ t

0

V (t − t′)
(
Λ1(un(t

′)) + Λ2(un(t
′)
)

dt′

−
γ

π
‖u0,n‖

2
L2

∫ t

0

V (t − t′)un(t′) dt′ , ∀t ∈] − 1, 1[ .(17)

From the linear estimates (6)-(8), Lemmas 2.2 and 2.3 and the above
convergence results, it follows that

v(t) = V (t)u0 − γ

∫ t

0

V (t − t′)
(
Λ1(v(t′)) + Λ2(v(t′)

)
dt′

−
γ

π
α2

∫ t

0

V (t − t′)v(t′) dt′(18)

and v is solution of the following Cauchy problem on ] − 1, 1[ :

(19)

{
ivt + vxx + γ(Λ1 + Λ2)(v) +

γ

π
α2v = 0

v(0) = u0

.

Proceeding exactly as for the cubic Schrödinger equation, it is easy to
prove that this Cauchy problem is globally well-posed2 in Hs(T), s ≥ 0,
with a solution belonging for all T > 0 to

C([−T, T ]; Hs(T)) ∩ L4(] − T, T [×T) ∩ X
1/2,0
T

with uniqueness in L4(] − T, T [×T). Therefore, there exists only one
possible limit and thus the whole sequence {unk

} converges weakly to

v in X
1/2,0
1 . Moreover, using the equation satisfied by the un and the

uniform bound in L∞(] − T, T [; L2(T)) ∩ L4(] − T, T [×T), it is easy to
check that for any time-independent 2π-periodic smooth function φ,
the family {t 7→ (unk

(t), φ)L2} is bounded in C([−1, 1]) and uniformly
equi-continuous on [−1, 1]. Ascoli’s theorem then ensures that (unk

, φ)
converges to (v, φ) on [−1, 1] and thus unk

(t) ⇀ v(t) in L2(T) for all
t ∈ [−1, 1]. By direct iteration this clearly also holds for all t ∈ R.
Note that, since the L2-norm of the solution is preserved by the flow
of (19), v can be also characterized as the unique solution in L4(] −
T, T [×T) to

(20)

{
ivt + vxx + γ|v|2v +

γ

π
(α2 − ‖u0‖

2
L2)v = 0

v(0) = u0

.

2Note that the L2-norm is preserved by the flow of (19)
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Finally, setting

ṽ(t, x) = exp
(
−

iγ

π
(α2 − ‖u0‖

2
L2) t

)
v(t, x)

we notice that ṽ ∈ L4(] − T, T [×T) and satisfies (1) with ṽ(0) = u0.
By uniqueness (see Theorem 2.1), it follows that ṽ = u, where u is the
solution to (1) emanating from u0. This completes the proof of the
theorem.
Acknowledgement: The author was partially supported by the ANR
project ” Etude qualitative des EDP dispersives”.
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