Nonparametric adaptive estimation for pure jump Lévy processes. - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2010

Nonparametric adaptive estimation for pure jump Lévy processes.

Fabienne Comte
Valentine Genon-Catalot
  • Fonction : Auteur
  • PersonId : 836340

Résumé

This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample path is observed at $n$ discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvolution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound for the ${\mathbb L}^2$-risk, under general assumptions on the model. Then we propose a penalty function that allows to build an adaptive estimator. The risk bound for the adaptive estimator is obtained under additional assumptions on the Lévy density. Examples of models fitting in our framework are described and rates of convergence of the estimator are discussed.
Fichier principal
Vignette du fichier
Levy2.pdf (266.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00289364 , version 1 (20-06-2008)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot. Nonparametric adaptive estimation for pure jump Lévy processes.. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2010, 46 (3), pp.595-617. ⟨10.1214/09-AIHP323⟩. ⟨hal-00289364⟩
117 Consultations
137 Téléchargements

Altmetric

Partager

More