Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier--Stokes equations - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Mathematics of Computation Année : 2010

Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier--Stokes equations

Résumé

Two discrete functional analysis tools are established for spaces of piecewise polynomial functions on general meshes: (i) a discrete counterpart of the continuous Sobolev embeddings, in both Hilbertian and non-Hilbertian settings; (ii) a compactness result for bounded sequences in a suitable Discontinuous Galerkin norm, together with a weak convergence property for some discrete gradients. The proofs rely on techniques inspired by the Finite Volume literature, which differ from those commonly used in Finite Element analysis. The discrete functional analysis tools are used to prove the convergence of Discontinuous Galerkin approximations of the steady incompressible Navier--Stokes equations. Two discrete convective trilinear forms are proposed, a non-conservative one relying on Temam's device to control the kinetic energy balance and a conservative one based on a nonstandard modification of the pressure.
Fichier principal
Vignette du fichier
paper.pdf (573.94 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00278925 , version 1 (14-05-2008)

Identifiants

  • HAL Id : hal-00278925 , version 1

Citer

Daniele Antonio Di Pietro, Alexandre Ern. Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier--Stokes equations. Mathematics of Computation, 2010, 79 (271), pp.1303-1330. ⟨hal-00278925⟩
235 Consultations
274 Téléchargements

Partager

Gmail Facebook X LinkedIn More