Minimax estimation of the conditional cumulative distribution function under random censorship - Archive ouverte HAL
Article Dans Une Revue Sankhya: The Indian Journal of Statistics Année : 2010

Minimax estimation of the conditional cumulative distribution function under random censorship

Fabienne Comte
Claire Lacour

Résumé

Consider an i.i.d. sample $(X_i,Y_i)$, $i=1, \dots, n$ of observations and denote by $F(x,y)$ the conditional cumulative distribution function of $Y_i$ given $X_i=x$. We provide a data driven nonparametric strategy to estimate $F$. We prove that, in term of the integrated mean square risk on a compact set, our estimator performs a squared-bias variance compromise. We deduce from this an upper bound for the rate of convergence of the estimator, in a context of anisotropic function classes. A lower bound for this rate is also proved, which implies the optimality of our estimator. Then our procedure can be adapted to positive censored random variables $Y_i$'s, i.e. when only $Z_i=\inf(Y_i, C_i)$ and $\delta_i=\1_{\{Y_i\leq C_i\}}$ are observed, for an i.i.d. censoring sequence $(C_i)_{1\leq i\leq n}$ independent of $(X_i,Y_i)_{1\leq i\leq n}$. Simulation experiments illustrate the method.
Fichier principal
Vignette du fichier
RepCondiHAL.pdf (2.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00274637 , version 1 (20-04-2008)

Identifiants

Citer

Elodie Brunel, Fabienne Comte, Claire Lacour. Minimax estimation of the conditional cumulative distribution function under random censorship. Sankhya: The Indian Journal of Statistics, 2010, A (Part 2), pp.293-330. ⟨10.1007/s13171-010-0018-1⟩. ⟨hal-00274637⟩
319 Consultations
598 Téléchargements

Altmetric

Partager

More