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MINIMAX ESTIMATION OF THE CONDITIONAL CUMULATIVE

DISTRIBUTION FUNCTION UNDER RANDOM CENSORSHIP

E. BRUNEL(∗),(1), F. COMTE(∗∗),(2) & C. LACOUR(∗∗),(3)

Abstract. Consider an i.i.d. sample (Xi, Yi), i = 1, . . . , n of observations and denote
by F (x, y) the conditional cumulative distribution function of Yi given Xi = x. We
provide a data driven nonparametric strategy to estimate F . We prove that, in term of
the integrated mean square risk on a compact set, our estimator performs a squared-bias
variance compromise. We deduce from this an upper bound for the rate of convergence
of the estimator, in a context of anisotropic function classes. A lower bound for this rate
is also proved, which implies the optimality of our estimator. Then our procedure can
be adapted to positive censored random variables Yi’s, i.e. when only Zi = inf(Yi, Ci)
and δi = 1{Yi≤Ci} are observed, for an i.i.d. censoring sequence (Ci)1≤i≤n independent
of (Xi, Yi)1≤i≤n. Simulation experiments illustrate the method.

April 2008

AMS (2000) subject classification. 62N02, 62G07.
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1. Introduction

Consider an i.i.d. sample (Xi, Yi)1≤i≤n of real-valued random variables with common
probability density function (pdf) f(X,Y ). In presence of a covariable, it is of interest to
consider the conditional cumulative distribution function of Y given X = x defined for all
real y and x such that the marginal density fX(x) of X is strictly positive, by

(1) F (x, y) =

∫ y
−∞ f(X,Y )(x, u)du

fX(x)
=

∫ y

−∞
π(x, u)du,

where π(x, y) denotes the conditional density of Y given X = x.
The conditional cumulative distribution function is often useful in reliability or in sur-

vival analysis, since it is involved in many applications. For instance, the conditional
survival function S(x, y) = 1 − F (x, y) is of interest, either by itself, or as denominator
for conditional hazard rate estimation (defined by h(x, y) = π(x, y)/S(x, y)). Conditional
quantiles can also be deduced from F (x, y) by (pseudo)-inversion given x of the function
F (x, y) and the same procedure may be applied to the estimator of F to find conditional
quantile estimators.
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The aim of the paper is to provide a nonparametric strategy to estimate F from the
observations.

It must be well understood that a function such as F behaves like a distribution function
only with respect to (w.r.t.) the y-variable but not in the x-direction. It is thus an inter-
esting nonparametric estimation problem to find an estimator that takes this asymmetry
into account.

The central formula in (1) suggests that a Nadaraya-Watson strategy building an esti-
mator as the ratio of an estimator of

∫ y
∞ f(X,Y )(x, u)du divided by an estimator of fX(x)

is conceivable: this strategy is studied in Ould-Säıd (2006). But estimators resulting of
such methods have the drawback of precisely involving a ratio: two functions have to
be estimated instead of one, and the denominator must be truncated so that it can not
be too small. This is the reason why we rather provide a regression-type strategy based
on a mean square contrast. By doing so, we can take advantage of tools developed for
standard regression by Baraud et al. (2001). We propose a simple data-driven strategy
which both builds a collection of projection estimators on finite dimensional spaces and
selects the adequate space by penalization of the mean square contrast. Then we prove
that the resulting estimator asymptotically reaches the adequate nonparametric rate, in
a data driven way. It is worth mentioning that the projection spaces can be different in
x and y-directions, and thus, it allows to be adaptive in x and on a pre-selected space in
y. Thus we can derive rates that take this into account. Moreover, we provide the lower
bound that implies rate-optimality of our estimator. To our knowledge, both the way of
considering the problem and the results we obtain are new.

We consider also the case of positive censored variables Yi’s which corresponds to the
context of lifetime studies. In many situations, such as medical trials or reliability sys-
tems, the lifetimes may not be completely observed and instead only censored lifetimes
are available. Let (Ci)1≤i≤n be an i.i.d. sequence of positive censoring variables, with
cumulative distribution function (cdf) G, independent of (Xi, Yi)1≤i≤n. In this context,
the observations are

(2) (Xi, Zi, δi)1≤i≤n, Zi = inf(Yi, Ci), δi = 1{Yi≤Ci}.

Then, we can provide both modified contrast and penalty following the transformation
device proposed by Koul et al. (1981) for censoring correction (see also Fan and Gijbels
(1994)). Bitouzé et al. (1999)’s results as already exploited in Brunel and Comte (2005)
allow an adequate control when substituting to a cdf its Kaplan-Meier estimator in presence
of censoring.

Our results can be compared to those obtained by Stute (1986) in the uncensored context
and Dabrowska (1989) in the censoring case for the Beran’s estimator which can be seen
as a generalized Kaplan-Meier estimator in the presence of covariables. Both works are
partly based on kernel strategies, and assume some particular regularity w.r.t. x (twice
differentiability of F ). Their strategies are not adaptive w.r.t. the bandwidth. In this
sense, we substantially improve the statistical strategy: we consider a general regularity
context and propose an adaptive estimator. Stute (1986) proves a central limit theorem
and Dabrowska (1989) gives a control of a uniform supremum-type norm. Note also that
Gonzalez-Manteiga and Cadarso-Suarez (1994) give an almost sure representation as a
sum of independent variables of the Beran’s estimator. Our estimator is different from
theirs in the sense that it is adaptive w.r.t. the unknown regularity. Moreover, we do not
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control the same type of risk since we use a global integrated L2-type norm on a compact
set. Some other ideas were later developed by Li and Doss (1995), Ducharme and Mint
El Mouvid (2001) and Hall et al. (1999). Li and Doss (1995) present nonparametric
methods which are very powerful but lack of adaptivity w.r.t. the conditioning variable.
On the other hand, Hall et al. (1999) discuss local linear methods and methods for which
the conditional cdf estimate is constrained to lie between 0 and 1 and to be monotone
increasing, a property which is not necessarily verified by our estimator.

The plan of the paper is the following. First we describe in Section 2 the uncensored case:
the estimation procedure (Section 2.1), the model collection and associated assumptions
(Section 2.2) and the upper risk bound (Section 2.4). The lower bound is proved to be in
adequation with our rate in Section 2.5. The censored case is described in Section 3. The
method in both uncensored and censored cases is illustrated via simulations and examples
in Section 4. The proofs are gathered in Section 5.

2. The uncensored case

In this section, we assume that (Xi, Yi), i = 1, . . . n are independent and identically
distributed pairs of variables and are completely observed. We estimate the conditional
distribution function F (x, y) of Yi given Xi = x on a given compact set A = A1×A2 ⊂ R2

only. Obviously, the conditional distribution function F belongs to the space of bounded
and square integrable functions on the compact set A = A1 ×A2 denoted by L∞ ∩L2(A).
Moreover, we require that the following assumption is fulfilled:

[A1 ] The density fX verifies ‖fX‖∞ := supx∈A1
|fX(x)| <∞ and there exists a positive

real f0 such that, for all x in A1, fX(x) ≥ f0.

2.1. Estimation procedure. In order to estimate F , we need to introduce a collection
{Sm,m ∈ Mn} of projection spaces: Sm is called a model and Mn is a set of multi-indexes
(see the examples in Section 2.2). For each m = (m1,m2), Sm is a space of functions

with support in A defined by using two spaces: S
(1)
m1 and S

(2)
m2 which are subspaces of

(L2∩L∞)(R) respectively spanned by two orthonormal bases (ϕm1
j )j∈Jm1

with |Jm1 | = D
(1)
m1

and (ψm2
k )k∈Km2

with |Km2 | = D
(2)
m2 . For all j and all k, the supports of ϕm

j and ψm
k are

respectively included in A1 and A2. Here j and k are not necessarily integers, they can be
couples of integers as in the case of a piecewise polynomial space, see Section 2.2. Then,
we define

Sm = S(1)
m1

⊗ S(2)
m2

= {t, t(x, y) =
∑

j∈Jm1

∑

k∈Km2

am
j,kϕ

m1
j (x)ψm2

k (y), am
j,k ∈ R}.

Let, for i = 1, 2, S(i)
n denote the largest space among the S

(i)
mi ’s. We denote by D(i)

n its
dimension and by (ϕn

j )j∈Jn , (ψn
k )k∈Kn their respective bases.

These spaces correspond to the model collection used in Brunel et al. (2008) for condi-
tional density estimation.

Now, we introduce the following contrast γ0
n(t), for any function t ∈ Sm:

(3) γ0
n(t) =

1

n

n∑

i=1

∫

R

(t2(Xi, y) − 2t(Xi, y)1{Yi≤y})dy.
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The contrast can be justified simply. Indeed, we have, for π(x, y) denoting the condi-
tional density of Y1 given X1 = x,

E(γ0
n(t)) = E

∫ (
t2(X1, y) − 2t(X1, y)1{Y1≤y}

)
dy

=

∫∫
t2(x, y)fX(x)dxdy − 2

∫∫ (∫
t(x, y)1{u≤y}dy

)
π(x, u)fX(x)dxdu

= ‖t‖2
f − 2

∫∫
t(x, y)

(∫
π(x, u)1{u≤y}du

)
fX(x)dxdy

= ‖t‖2
f − 2〈t, F 〉f = ‖t− F‖2

f − ‖F‖2
f

where ‖t‖2
f =

∫∫
A t

2(x, y)fX(x)dxdy and 〈s, t〉f =
∫∫

s(x, y)t(x, y)fX(x)dxdy.

Therefore γ0
n(t) is the empirical counterpart of ‖t−F‖2

f −‖F‖2
f and thus minimizing it

leads to minimize ‖t− F‖f in mean. Moreover, under assumption [A1], the norm ‖.‖f is
equivalent to the usual L2 norm on A (‖t‖2 =

∫∫
A t

2(x, y)dxdy).
This contrast is new and its originality actually stands in the fact that it is a mean square

contrast w.r.t. the Xi’s and a projection contrast w.r.t. y. We emphasize the particular
choice that can be made here: we take advantage of the fact that F has a distribution func-
tion behavior with respect to y. No model selection is required in the y-direction. Indeed,
if t(x, y) = t2(y) does not depend of x, then γ0

n(t) = γ0
n(t2) =

∫
t22(y)dy−2

∫
t2(y)F̂Y,n(y)dy

where F̂Y,n(y) = (1/n)
∑n

i=1 1{Yi≤y} is the standard empirical distribution function of y.
This explains why the dimension w.r.t. y is fixed a priori to be the greatest as possible.

Thus, instead of minimizing the contrast over classes of functions belonging to S
(1)
m1 ⊗S(2)

m2 ,
we can directly select the second space. Therefore, the conditional distribution function
estimator is defined by:

(4) F̂m1 = arg min
t∈S

(1)
m1

⊗S(2)
n

γ0
n(t),

where the minimization holds in the sense explained in Section 2.3.
It is noteworthy that this is different of the conditional density estimator described in

Brunel et al. (2008) where both x- and y-dimensions have to be relevantly selected (and
are constrained in the censored case to be the same).

Now, the estimator F̂m1 is likely to be close of Fm1 , the L2-orthogonal projection of F

on S
(1)
m1 ⊗ S(2)

n , so that the following decomposition of the risk holds:

E(‖F̂m1 − F‖2) = ‖Fm1 − F‖2 + E(‖F̂m1 − Fm1‖2).

The term ‖Fm1 − F‖2 is a deterministic squared bias term, which decreases when D
(1)
m1 =

dim(S
(1)
m1) increases. The term E(‖F̂m1 − Fm1‖2) is often called a variance term and gen-

erally increases with D
(1)
m1 . This explains why the model S

(1)
m1 must be selected in order

to perform an adequate squared bias/variance compromise. Moreover, this term does not

depend on S(2)
n and in particular on its dimension: this is another way to explain why we

can choose directly the largest space of the collection in the second direction.
Thus, to perform model selection, we set

(5) m̂0 = arg min
m1∈Mn

{γ0
n(F̂m1) + pen0(m1)}
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where pen0 is a penalty function to be specified later. Then we can define

F̃ = F̂m̂0 .

2.2. Assumptions on the models and examples. The models we have in mind all
fulfill the following key properties:

[M1] D(1)
n ≤ n.

[M2] There exist positive a real φ1 such that, for all u in S
(1)
m1 , ‖u‖2

∞ ≤ φ1D
(1)
m1

∫
u2.

[M3] D
(1)
m1 ≤ D

(1)
m′

1
⇒ S

(1)
m1 ⊂ S

(1)
m′

1
.

Note that assumption [M2] is equivalent to

∃φ1 > 0, ‖
∑

j∈Jm1

(ϕm1
j )2‖∞ ≤ φ1D

(1)
m1
.

Therefore, the spaces on which the estimators are built are Sm = S
(1)
m1⊗S(2)

n = {t, t(x, y) =∑
j∈Jm1

∑
k∈Kn

am
j,kϕ

m1
j (x)ψn

k (y), am
j,k ∈ R}. The third assumption [M3] ensures that,

for m and m′ in Mn, Sm + Sm′ is included in a model (since Sm + Sm′ ⊂ Sm′′ with

D
(1)
m′′

1
= max(D

(1)
m1 , D

(1)
m′

1
) and D

(2)
m′′

2
= D(2)

n ). We denote by S the space with maximal di-

mension among the (Sm)m∈Mn . Thus for all m in Mn, Sm ⊂ S. Lastly, for t ∈ Sm, we
denote by ‖t‖2 =

∫∫
t2(x, y)dxdy and ‖t‖∞ = sup(x,y)∈A1×A2

|t(x, y)|.
Now, we show that Assumptions [M1]–[M3] are not too restrictive. Indeed, they are

verified for the spaces S
(i)
mi (i = 1, 2) spanned by the following bases (see Barron et al.

(1999)):

• Trigonometric basis: forA1 = [0, 1], span(ϕ0, . . . , ϕm1−1) with ϕ0 = 1[0,1], ϕ2j(x) =√
2 cos(2πjx) 1[0,1](x), ϕ2j−1(x) =

√
2 sin(2πjx)1[0,1](x) for j ≥ 1. For this model

D
(1)
m1 = m1 and φ1 = 2 hold.

• Histogram basis: forA1 = [0, 1], span(ϕ1, . . . , ϕ2m1 ) with ϕj = 2m1/2
1[(j−1)/2m1 ,j/2m1 [

for j = 1, . . . , 2m1 . Here D
(1)
m1 = 2m1 , φ1 = 1.

• Regular piecewise polynomial basis: for A1 = [0, 1], polynomials of degree 0, . . . , r
(where r is fixed) on each interval [(l − 1)/2D, l/2D[, l = 1, . . . , 2D. In this case,

m1 = (D, r), Jm = {j = (l, d), 1 ≤ l ≤ 2D, 0 ≤ d ≤ r}, D(1)
m1 = (r + 1)2D. We can

put φ1 =
√
r + 1.

• Regular wavelet basis: span(Ψlk, l = −1, . . . ,m1, k ∈ Λ(l)) where Ψ−1,k points out

the translates of the father wavelet and Ψlk(x) = 2l/2Ψ(2lx − k) where Ψ is the
mother wavelet. We assume that the support of the wavelets is included in A1 and
that Ψ−1 belongs to the Sobolev space W r

2 .

We repeatedly use in the proofs the following property. Let (ψ
(m2)
k , 1 ≤ k ≤ D

(2)
m2) be

an orthonormal basis of S
(2)
m2 , then, for any bounded function ξ ∈ L2(A2),

(6)

D
(2)
m2∑

k=1

(∫

A2

ψ
(m2)
k (y)ξ(y)dy

)2

≤
∫

A2

ξ2(y)dy ≤ ℓ(A2) sup
y∈A2

ξ2(y),
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where ℓ(A2) denotes the length of A2. Indeed, the left-hand-side of (6) is simply the

L2(A2) norm of the orthogonal projection of ξ on S
(2)
m2 , and this is less than the L2(A2)

norm of ξ.

2.3. About the definition of the estimator. We discuss now the definition of F̂m1

given by (4). Let t(x, y) =
∑

j∈Jm1

∑
k∈Kn

aj,kϕ
m1
j (x)ψn

k (y) be a function in S
(1)
m1 ⊗ S(2)

n .

Then, ∂γ0
n(t)/∂aj0,k0 = 0 if and only if

(7)
∑

j∈Jm1

aj,k0

1

n

n∑

i=1

ϕm1
j (Xi)ϕ

m1
j0

(Xi) =
1

n

n∑

i=1

ϕm1
j0

(Xi)

∫
ψn

k0
(y)1{Yi≤y}dy,

which implies that

∀j0∀k0
∂γ0

n(t)

∂aj0,k0

= 0 ⇔ Gm1Am1 = Υm1 ,

where Am1 denotes the matrix (aj,k)j∈Jm1 ,k∈Kn ,

Gm1 =

(
1

n

n∑

i=1

ϕm1
j (Xi)ϕ

m1
l (Xi)

)

j,l∈Jm1

and

Υm1 =

(
1

n

n∑

i=1

ϕm1
j (Xi)

∫
ψn

k (y)1{Yi≤y}dy

)

j∈Jm1 ,k∈Kn

.

In fact, we cannot define a unique minimizer of the contrast γ0
n(t), since Gm1 is not

necessarily invertible. However, the following proposition still enables us to define an
estimator:

Proposition 1.

∀j0∀k0
∂γ0

n(t)

∂aj0,k0

= 0 ⇔ ∀u, (t(Xi, u))1≤i≤n = PW




(
∑

k

ψn
k (u)

∫
ψn

k (y)1{Yi≤y}dy

)

1≤i≤n





where PW denotes the orthogonal projection on W = {(t(Xi, u))1≤i≤n, t ∈ S
(1)
m1 ⊗ S(2)

n }
with the euclidian scalar product 〈 . , . 〉Rn in Rn.

Remark 1. It follows from Proposition 1 that the minimization of γ0
n(t) leads to a unique

vector (F̂m1(Xi, u))1≤i≤n defined as the projection of the vector
(∑

k ψ
n
k (u)

∫
ψn

k (y)1{Yi≤y}dy
)
1≤i≤n

on W. The associated function F̂m1(., .) is not defined uniquely but we can choose a func-

tion F̂m1 in S
(1)
m1⊗S(2)

n whose values at (Xi, u) are fixed according to Proposition 1. For the
sake of simplicity, we use the notation (4) but one must keep in mind that the underlying

function is a theoretical tool: the estimator is actually the vector (F̂m1(Xi, u))1≤i≤n.

Remark 2. As a consequence of Remark 1, we do not compute a standard L2-risk but
instead the following empirical mean integrated squared error E‖F − F̃‖2

n where ‖.‖n is
the empirical norm defined by

(8) ‖t‖n =

(
1

n

n∑

i=1

∫

R

t2(Xi, y)dy

)1/2

.
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This norm is the natural distance in this problem and we can notice that if t is deterministic
with support included in A1 × R

f0‖t‖2 ≤ E‖t‖2
n = ‖t‖2

f ≤ ‖fX‖∞‖t‖2

and then the mean of this empirical norm is equivalent to the L2(A) norm ‖.‖.
2.4. Main result. For a function h and a subspace S, let

d(h, S) = inf
g∈S

‖h− g‖ = inf
g∈S

(∫∫
|h(x, y) − g(x, y)|2dxdy

)1/2

.

With an inequality of Talagrand (1996), we can prove the following result in the uncensored
case.

Theorem 1. We consider the uncensored model satisfying Assumption [A1]. We consider

F̃ the estimator on A of the conditional distribution function F described in Section 2.1
with model collections verifying Assumptions [M1]-[M2]-[M3], and the following penalty:

(9) pen0(m1) = K0ℓ(A2)
D

(1)
m1

n
,

where K0 is a numerical constant. Then

(10) E‖F1A − F̃‖2
n ≤ C inf

m1∈Mn

{d2(F1A, Fm1) + pen0(m1)} +
C ′

n

where C = max(5‖fX‖∞, 6) and C ′ is a constant depending on φ1, ℓ(A2), f0.

The penalty (9) deserves some comments. First, the constantK0 in the penalty is purely
numerical and calibrated via simulations. Moreover, note that inequality (10) holds for

any penalty pen0(.) such that pen0(m1) ≥ K0ℓ(A2)D
(1)
m1/n.

We can deduce from Theorem 1 the rate of convergence of the risk. For that purpose,
assume that F restricted to A belongs to the anisotropic Besov space on A with regularity
α = (α1, α2). Let us recall the definition of Bα

2,∞(A). Let e1 and e2 be the canonical basis

vectors in R2 and for i = 1, 2, Ar
i,h = {x ∈ R2;x, x + hei, . . . , x + rhei ∈ A}. Next, for x

in Ar
i,h, let

(11) ∆r
i,hg(x) =

r∑

k=0

(−1)r−k

(
r

k

)
g(x+ khei)

the rth difference operator with step h. For t > 0, the directional moduli of smoothness
are given by

ωri,i(g, t) = sup
|h|≤t

(∫

A
ri
i,h

|∆ri

h,ig(x)|2dx
)1/2

.

We say that g is in the Besov space Bα

2,∞(A) if supt>0

∑2
i=1 t

−αiωri,i(g, t) < ∞ for ri
integers larger than αi.

The estimation procedure may allow an adaptation of the approximation space to each
directional regularity. It happens that in the y-direction, the greatest space is directly

chosen. Thus, we just have to select a relevant S
(1)
m1 .
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Corollary 1. Assume that F restricted to A belongs to the anisotropic Besov space
Bα

2,∞(A) with regularity α = (α1, α2) such that α1 > 1/2 and α2 > 1. We consider the
spaces described in Subsection 2.2 (with the regularity r of the polynomials and the wavelets

larger than αi − 1). Then, for D(2)
n ≥ √

n and under the assumptions of Theorem 1,

E‖F1A − F̃‖2
n = O(n

− 2α1
2α1+1 ).

Thus we obtain a rate of convergence which would be standard for the estimation of a
function of one variable with regularity α1. We need to check the associated lower bound.

Remark 3. The empirical norm is the more natural in this problem, but if we were
interested in a L2 control of the risk, we may modify the estimation procedure as follows:

(12) F̃ ∗ =

{
F̃ if ‖F̃‖ ≤ kn

0 else

with kn = nλ for some well-chosen λ ∈]0, 1[. We may prove in this framework a result

similar to Theorem 1 but bounding E‖F̃ ∗ − F1A‖2 instead of its empirical version, see
Lacour (2007).

2.5. Lower bound. We denote by ‖.‖A the norm in L2(A), i.e. ‖g‖A =
(∫

A |g|2
)1/2

. The
norm in the Besov space Bα

2,∞(A) is

‖F‖Bα

2,∞(A) = ‖F‖A + |F |Bα

2,∞(A)

where

|F |Bα

2,∞(A) = sup
0≤t≤1

2∑

i=1

t−αi sup
|h|≤t

∥∥∥∆ri

i,hF
∥∥∥

A
ri
h,i

with ∆ri

h,iF (x, y) defined as in (11) and ri an integer strictly larger than αi. We set

B = {F conditional distribution function on R2 such that ‖F‖Bα

2,∞(A) ≤ L}

and EF,f the expectation corresponding to the distribution of (X1, Y1), . . . , (Xn, Yn) if the
true conditional distribution function of (X,Y ) is F and the true marginal density of X
is f .

Theorem 2. We assume that α2 > 1. Then, for all f uniformly bounded, there exists a
positive constant C such that, if n is large enough,

inf
F̂n

sup
F∈B

EF,f‖F̂n − F‖2
A ≥ Cn

− 2α1
2α1+1

where the infimum is taken over all estimators F̂n of F based on the couples of observations
(X1, Y1), . . . , (Xn, Yn).

As a conclusion, we deduce from Theorem 2 that the estimate F̃ = F̂m̂0 has the optimal
rate of convergence and is thus adaptive and minimax.
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3. The censored case

In this section, we consider the censoring framework (2). Remember that the censoring
variables (Ci), i = 1 . . . , n are independent and identically distributed positive variables,
with cdf G; the Ci’s are independent of the sequence (Xi, Yi), i = 1 . . . , n. In this context,
we observe (Xi, Zi, δi) where Zi = Yi ∧Ci and δi = 1{Yi≤Ci}. As we have in mind lifetime
studies, we only consider positive variables Yi and Ci, i = 1 . . . , n.

Here, we have to mention that the constraints added to extend our results from uncen-
sored to censored case are weak. In the conditional density estimation studied by Brunel
et al. (2008), both x and y-dimensions need to be the same, which is a pure technical (and
unnatural) constraint. With the cumulative conditional distribution, since model selec-
tion has only to be performed in the x-direction, this drawback is avoided. In any case,
the theoretical penalty has to be replaced by a random one since it depends on the (un-
known) lower bound of the survival function of the censoring variable on A2 as explained
in Section 4.

3.1. Estimation procedure. In the censored case, it is classical to assume, in addition
of [A1] the following:

[A2 ] For all y ∈ A2, 1 −G(y) ≥ cG > 0.

Note that the lower bound condition [A2] is required only on the compact set A2, which
is a very mild assumption.

Now, let us take into account the fact that the Yi’s may be censored in the definition of
the contrast. We use a standard transformation of the data (see Fan and Gijbels (1994)),
based on the weights:

(13) wi =
δi

Ḡ(Zi)

where Ḡ = 1 − G is the survival function associated with the censoring variables. They
are replaced by an empirical version and we choose the contrast function

(14) γn(t) =
1

n

n∑

i=1

∫

R

(t2(Xi, y) − 2ŵit(Xi, y)1{Zi≤y})dy, ŵi =
δi
̂̄G(Zi)

.

Note that γ0
n(t) and γn(t) coincide by defining the weights wi = 1 and ŵi = 1 if no

censoring occurs (and then Zi = Yi).

Here ˆ̄G is the Kaplan Meier estimator of the survival function Ḡ of the Ci’s, modified
in the way suggested by Lo et al. (1989), and defined by

(15) ̂̄G(y) =
∏

i / Z(i)≤y

(
n− i+ 1

n− i+ 2

)1−δ(i)

.

Note that ̂̄G is a slight modification of the standard Kaplan-Meier estimator in order

to satisfy the following useful property: ̂̄G(y) ≥ 1/(n + 1), ∀y. Moreover, it is a very
good estimator of Ḡ on the interval A2, in the sense of Lemma 1 in Section 5, provided
A2 ( [0, τ ] where τ = sup{y,G(y) < 1}; this condition is ensured by Assumption [A2].
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Therefore, we define

(16) F̂m1 = arg min
t∈S

(1)
m1

⊗S(2)
n

γn(t),

where the minimization problem holds in the sense explained in Section 2.3 (by replacing∫
ψn

k (y)1{Yi≤y}dy by ŵi

∫
ψn

k (y)1{Zi≤y}dy), and lastly, we select the adequate dimension
m̂ by:

(17) m̂ = arg min
m1∈Mn

{γn(F̂m1) + pen(m1)} and F̃ = F̂m̂,

where pen is a penalty function to be specified later.

3.2. Risk bound. In the censored case, the penalty coming out contains terms that must
be estimated. We obtain the following result:

Theorem 3. We consider the censored model satisfying Assumptions [A1]–[A2]. We

consider F̃ the estimator of the conditional distribution F1A described in (16)-(17) with

models verifying Assumptions [M1]-[M2]-[M3] with D(1)
n ≤ √

n. We choose the following
penalty:

(18) pen(m) = K0ℓ(A2)Ξ
D

(1)
m1

n
, with Ξ =

φ1

f0
E

(
δ1

Ḡ2(Z1)

)
or Ξ =

1

cG
,

where K0 is a numerical constant. Then

E‖F1A − F̃‖2
n ≤ C inf

m1∈Mn

{d2(F1A, S
(1)
m1

⊗ S(2)
n ) + pen(m1)} +

C ′

n

where C = max(5‖fX‖∞, 6) and C ′ is a constant depending on φ1, ℓ(A2), f0, cG.

Here the penalty involves quantities that should be estimated: cG in the last case
(see Section 4); in the first case, f0, the lower bound of fX the density of the Xi’s on
the interval A1 (which is replaced by an estimator built as the minimum value of an
estimator of fX) and the expectation E(δ1/Ḡ

2(Z1)) (which is replaced by an empirical

mean (1/n)
∑n

i=1 δi/
ˆ̄G2(Zi)). Finally, a similar result as Theorem 3 would hold with the

unknown penalty replaced by its empirical version but is omitted for sake of brevity. Note
that the dimension of the greatest space for the x-direction is constrained to be of order√
n however no heavy condition is required against the uncensored data case.

4. Simulations

We study the estimation procedure by generating samples (Xi, Yi) following three mod-
els:

• Example 1. Let Yi = b(Xi) + εi, with εi i.i.d. N (0, 1), Xi i.i.d. uniform U([0, 1]),
b(x) = 2x+ 5. We take A = [0, 1] × [3, 9.5].

• Example 2. Hall et al. (1999)’s example. Let Yi = b(Xi) + εi, with εi i.i.d., Xi

i.i.d. uniform, both with density 1 − |x| on [−1, 1], b(x) = 2 sin(πx). We take
A = [−0.9, 0.9] × [−2.8, 2.8].

• Example 3. Given Xi = x, let Yi follow the distribution 0.5N (8−4x, 1)+0.5N (8+
4x, 1). The Xi’s are i.i.d. U([0, 1]). We take A = [0, 1] × [2, 14].
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Censoring Basis n = 200 n = 500 n = 1000
Example 1 0% H 0.0489 0.0424 0.0292

P 0.0944 0.0368 0.0194
T 0.0782 0.0705 0.0587
T⋆ 0.0274 0.0204 0.0111

Example 1 20% H 0.0729 0.0638 0.0569
(c = 8.7) P 0.1481 0.0670 0.0425

T 0.1339 0.0986 0.0885
T⋆ 0.0790 0.0451 0.0353

Example 1 40% H 0.1190 0.0989 0.0936
(c = 6.97) P 0.2284 0.1226 0.0887

T 0.2131 0.2035 0.1808
T⋆ 0.1492 0.1411 0.1184

Example 2 0% H 0.3119 0.1266 0.1193
P 1.2081 1.1200 1.1016
T 0.2167 0.1079 0.1040
T⋆ 0.1161 0.0320 0.0288

Example 3 0% H 0.0864 0.0768 0.0549
P 0.1627 0.0638 0.0317
T 0.1242 0.1150 0.0974
T⋆ 0.0402 0.0319 0.0180

Example 3 20% H 0.1686 0.1466 0.1368
(c = 11.65) P 0.3236 0.1632 0.1110

T 0.2254 0.1694 0.1557
T⋆ 0.1358 0.0820 0.0690

Table 1. MISE values for the estimator F̃ , for K = 500 replications, n
observations and bases: H=histogram, P= Piecewise polynomials, T =
Trigonometric polynomials, T⋆ = Trigonometric polynomial on truncated
interval.

The sets A = A1 ×A2 are fixed intervals, roughly calibrated with respect to each distrib-
ution. In the first two cases, the conditional distribution function F is given by

F (x, y) = Fε(y − b(x)),

with b(x) = 2x+ 5 (example 1) or b(x) = 2 sin(πx) (example 2) and Fε is the distribution
function of ε. For Example 3, we have F (x, y) = 0.5Φ(−(y−8+4x))+0.5Φ(−(y−8−4x)),
where Φ is the N (0, 1) distribution function.
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Figure 1. Plots of the estimated (top-left) with basis T⋆ (trigonometric
polynomials with boundary truncation) and the true (top right) conditional

distribution function and y 7→ F (x, y) (full line), F̃ (x, y) (dashed dotted
line) for x = 0.28 (bottom-left) and y = 6.48 (bottom-right) with n = 2000
observations in Example 1 and with 20% of censoring.

The penalty is chosen as follows:

(19) ℓ(A2) max
1≤i≤n

(
1

ˆ̄G(Zi)

)
Dm1

n
.

If the data are uncensored, the term (max(1/ ˆ̄G(Zi)) is equal to one, and we recover the
empirical version of (9) with constant K0 calibrated as 1. In the censored case, this factor
stands for 1/cG and is quite great but it seems to be what is required for the estimation

algorithm to give good results. The algorithm selects D
(1)
m less than

√
n and the other

dimension D(2)
n is fixed to the maximal value n. Three bases are considered, in accordance

with the description of Section 2.2: the trigonometric basis denoted by T or T⋆ (see the
explanation for T ⋆ below, the histogram basis denoted by H, the piecewise polynomial
basis with degree r = 2 denoted by P (and built by using the Legendre basis).

We compute the empirical MISE (Mean Integrated Squared Error) over N = 500 repli-
cations of the samples, by averaging over the paths j = 1, . . . , N , the quantities

ℓ(A1)ℓ(A2)

K2

K∑

k,ℓ=1

(F̃ (j)(xk, yℓ) − F (xk, yℓ))
2,

where ℓ(Ai) is the length of the interval Ai, i = 1, 2, (xk)1≤k≤K , (yk)1≤k≤K are subdivisions

of A1 and A2 respectively, and F̃ (j) is the estimate associated to the jth sample path. Note
that we compute L2-type errors in both x- and y-directions instead of using the empirical
norm in the x-direction.

When censoring occurs, the Ci’s are generated as exponential random variables E(c)
with parameter c empirically adjusted to reach a given censoring rate (20% or 40%),
namely c = 6.97 for Example 1 and censoring level 40% and c = 8.7 for Example 1 and
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Figure 2. Plots of the estimated (top-left) with histogram basis and the
true (top right) conditional distribution function and y 7→ F (x, y) (full

line), F̃ (x, y) (dashed dotted line) for x = −0.37 (bottom-left) and y = 1.10
(bottom-right) with n = 2000 observations in Example 2 and without cen-
soring.
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Figure 3. Plots of the estimated (top-left) with basis T (piecewise poly-
nomials) and the true (top right) conditional distribution function and

y 7→ F (x, y) (full line), F̃ (x, y) (dashed dotted line) for x = 0.29 (bottom-
left) and y = 7.94 (bottom-right) with n = 1500 observations in Example
3 and without censoring.

censoring level 20%, c = 11.65 for Example 3 (censoring level 20%). The variables in
Example 2 are not positive and therefore not included in the censoring study. Figures 1,
2 and 3 illustrate the appearance of our estimates. Note that it can be seen from Figure 2
that the histogram basis is very performing and that its localization properties are crucial.
This is true for all examples.
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Monte Carlo experiment results are reported in Table 1. As expected, censoring deteri-
orates the result, and a sample size increase improves them significantly. The best results
are obtained for the basis T⋆ that is the basis of trigonometric polynomials where only 90%
of the points (xk, yℓ) are used to compute errors: we avoid like this boundary effect, and for
k, ℓ = 1, . . . , 100, this corresponds to MISE computed over the points (xk, yℓ)6≤k,ℓ≤95, the
plot in Figure 1 is given accordingly to the same points. This illustrates that the trigono-
metric basis is not localized but works globally on the domain of estimation; this implies
important boundary effects. On the opposite, the histogram basis is always competitive
probably because it is very localized, even for small sample size, whereas the piecewise
polynomial basis requires larger sample sizes. Note that the piecewise polynomial basis
fails in the case of example 2, probably because the true distribution is constant on subsets
of the domain: thus, the degree of the polynomials should not be fixed but also selected.

5. Proofs

All proofs (except the proof of Theorem 2) are written in the general possibly censored
setting. The uncensored case corresponds to weights wi = ŵi = 1 and Zi = Yi and we
denote by pen(m) the general penalty function involved in Theorem 1 and 3.

5.1. Proof of Proposition 1. Here we prove

∀j0∀k0,
∂γ0

n(t)

∂aj0,k0

= 0 ⇔ ∀u, (t(Xi, u))1≤i≤n = PW




(
ŵi

∑

k

ψn
k (u)

∫
ψn

k (y)1{Zi≤y}dy

)

1≤i≤n





with notations of Proposition 1.
Equality (7) yields, by multiplying by ψn

k0
(u),

∑

j∈Jm1

aj,k0

n∑

i=1

ϕm1
j (Xi)ψ

n
k0

(u)ϕm1
j0

(Xi) =
n∑

i=1

ϕm
j0(Xi)ŵi

∫
ψn

k0
(y)1{Zi≤y}dyψ

n
k0

(u).

Then, we sum over k0 in Kn:

n∑

i=1

t(Xi, u)ϕ
m1
j0

(Xi) =
n∑

i=1

∑

k0∈Kn

ŵi

∫
ψn

k0
(y)1{Zi≤y}dyψ

n
k0

(u)ϕm1
j0

(Xi).

If we multiply this equality by a′j0,kψ
n
k (u) and if we sum over k ∈ Kn and j0 ∈ Jm1 , we

obtain

n∑

i=1

[t(Xi, u) −
∑

k0∈Kn

ŵi

∫
ψn

k0
(y)1{Zi≤y}dyψ

n
k0

(u)]
∑

k∈Kn

∑

j0∈Jm1

a′j0,kϕ
m1
j0

(Xi)ψ
n
k (u) = 0

i.e.

n∑

i=1

[t(Xi, u) −
∑

k0∈Kn

ŵi

∫
ψn

k0
(y)1{Zi≤y}dyψ

n
k0

(u)]s(Xi, u) = 0

for all s in S
(1)
m1 ⊗ S(2)

n . So the vector (t(Xi, u) −
∑

k∈Kn
ŵi

∫
ψn

k (y)1{Zi≤y}dyψ
n
k (u))1≤i≤n

is orthogonal to each vector in W. Since t(Xi, y) belongs to W, the proposition is proved.
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5.2. Proof of Theorem 1 and 3. For ρ a real larger than 1, let

Ωρ = {∀t ∈ S ‖t‖2
f ≤ ρ‖t‖2

n}

We denote by Fm1 the orthogonal projection of F on S
(1)
m1 ⊗ S(2)

n . Now,

E‖F̃ − F1A‖2
n = E

(
‖F̃ − F1A‖2

n1Ωρ

)
+ E

(
‖F̃ − F1A‖2

n1Ωc
ρ

)
(20)

To bound the first term, we observe that for all s, t

γn(t) − γn(s) = ‖t− F‖2
n − ‖s− F‖2

n − 2νn(t− s) − 2Rn(t− s)

where

νn(t) =
1

n

n∑

i=1

{
wi

∫
t(Xi, y)1{Zi≤y}dy −

∫

R

t(Xi, y)F (Xi, y)dy

}
,

Rn(t) =
1

n

n∑

i=1

∫
t(Xi, y)1{Zi≤y}dy [ŵi − wi] .

Since ‖t− F‖2
n = ‖t− F1A‖2

n + ‖F1Ac‖2
n, we can write

γn(t) − γn(s) = ‖t− F1A‖2
n − ‖s− F1A‖2

n − 2νn(t− s) − 2Rn(t− s).

The definition of m̂ gives, for some fixed m1 ∈ Mn,

γn(F̃ ) + pen(m̂) ≤ γn(Fm1) + pen(m1).

And then

‖F̃ − F1A‖2
n ≤ ‖Fm1 − F1A‖2

n + pen(m1) + 2Rn(F̃ − Fm1)

+2νn(F̃ − Fm1) − pen(m̂)

≤ ‖Fm1 − F1A‖2
n + pen(m1) + 2‖F̃ − Fm1‖f sup

t∈Bf (m̂)
Rn(t)

+2‖F̃ − Fm1‖f sup
t∈Bf (m̂)

νn(t) − pen(m̂)

where, for all m′, Bf (m′) = {t ∈ S
(1)
m1 ⊗S(2)

n + S
(1)
m′ ⊗S(2)

n , ‖t‖f = 1}. Let θ a real larger
than 2ρ and p(., .) a function such that 2θp(m,m′) ≤ pen(m) + pen(m′). Then

‖F̃ − F1A‖2
n1Ωρ ≤ ‖Fm1 − F1A‖2

n +
1

θ
‖F̃ − Fm1‖2

f1Ωρ + 2pen(m1)

+2θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
ν2

n(t) − p(m1,m
′)

]

+

1Ωρ

+2θ sup
t∈Bf (m̂)

R2
n(t)1Ωρ(21)

But ‖F̃ − Fm1‖2
f1Ωρ ≤ ρ‖F̃ − Fm1‖2

n1Ωρ ≤ 2ρ‖F̃ − F1A‖2
n1Ωρ + 2ρ‖F1A − Fm1‖2

n.
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Then, inequality (21) becomes

‖F̃ − F1A‖2
n1Ωρ

(
1 − 2ρ

θ

)
≤

(
1 +

2ρ

θ

)
‖Fm1 − F1A‖2

n + 2pen(m1)

+2θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
ν2

n(t) − p(m1,m
′)

]

+

1Ωρ

+2θ sup
t∈Bf (m̂)

R2
n(t)1Ωρ

so E
(
‖F̃ − F1A‖2

n1Ωρ

)
≤ θ + 2ρ

θ − 2ρ
E‖F1A − Fm1‖2

n +
2θ

θ − 2ρ
pen(m1)

+
2θ2

θ − 2ρ

∑

m′∈Mn

E

([
sup

t∈Bf (m′)
ν2

n(t) − p(m1,m
′)

]

+

1Ωρ

)

+
2θ2

θ − 2ρ
E

([
sup

t∈Bf (m̂)
R2

n(t)

]

+

1Ωρ

)
(22)

We now use the following proposition:

Proposition 2. Under the assumptions of Theorem 1, with p(m1,m
′) = 2ℓ(A2)D

(1)(m1,m
′)/n

where D(1)(m1,m
′) = max(D

(1)
m1 , D

(1)
m′ ), or under the assumptions of Theorem 3, with either

p(m1,m
′) = 2ℓ(A2)D

(1)(m1,m
′)/(ncG) or p(m1,m

′) = 2(ℓ(A2)φ1/f0)E(δ1/Ḡ
2(Z1))D

(1)(m1,m
′)/n,

there exists a constant C1 such that

(23)
∑

m′∈Mn

E

([
sup

t∈Bf (m′)
ν2

n(t) − p(m1,m
′)

]

+

1Ωρ

)
≤ C1

n
.

Moreover, we can prove that

(24) E

([
sup

t∈Bf (m̂)
R2

n(t))

]

+

1Ωρ

)
≤ E

([
sup

t∈Bf (n)
R2

n(t))

]

+

1Ωρ

)
≤ C

n

where Bf (n) is the unit ball of the largest space of the (nested) collection.
To prove (24), let us define

(25) ΩG = {ω, ∀y ∈ A2,
ˆ̄G(y) − Ḡ(y) > −cG/2}.

On ΩG, ˆ̄G(y) > cG/2 and ˆ̄G(y) ≥ 1/(n+ 1), for all y ∈ A2. Now we use the following key
lemma, useful to control the probability of the uniform deviation of the estimator of the

survival distribution function ˆ̄G:

Lemma 1. For all k ∈ N∗, there exists a constant Ck depending on k and cG such that

E

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2k

)
≤ Ck

nk
.

This lemma is proved in Brunel and Comte (2005), see Lemma 6.1. Now write, for sake
of simplicity (ϕj , ψk) instead of (ϕm

j , ψ
m
k )j∈In,k∈Kn , an orthonormal basis of the largest
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space of the collection,

E

([
sup

t∈Bf (n)
R2

n(t))

]

+

1Ωρ1Ωc
G

)
≤ 1

f0

∑

j,k

E(R2
n(ϕjψk)1Ωc

G
)

≤ ℓ(A2)φ1D(1)
n

c2Gf0
E

(
1

n

n∑

i=1

( ˆ̄G(Yi) − Ḡ(Yi))
2
1A2(Yi)

ˆ̄G2(Yi)
1Ωc

G

)

≤ ℓ(A2)φ1D(1)
n

c2Gf0
(n+ 1)2E( sup

y∈A2

| ˆ̄G(y) − Ḡ(y)|21
supy∈A2

| ˆ̄G(y)−Ḡ(y)|>cG/2
)

≤ 2ℓ(A2)φ1n
3

c2Gf0
(2/cG)6E( sup

y∈A2

| ˆ̄G(y) − Ḡ(y)|8) ≤ C

n
.

Next, we need to study Rn on ΩG. To this end, we write that:

E

([
sup

t∈Bf (n)
R2

n(t)

]

+

1Ωρ1ΩG

)

≤ 4

c4G
E

[
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2 sup
t∈Bf (n)

(
1

n

n∑

i=1

(

∫
t(Xi, y)1{Yi≤y}dy)

2

)]

≤ 4

c4G
E

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2
)

sup
t∈Bf (n)

E[(

∫
t(X1, y)1{Y1≤y}dy)

2](26)

+
4

c4G
E1/2

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|4
)

E1/2

(
sup

t∈Bf (n)
(νn”(t))2

)
(27)

where

νn”(t) =
1

n

n∑

i=1

[(∫
t(Xi, y)1{Yi≤y}dy

)2

− E[(

∫
t(X1, y)1{Yi≤y}dy)

2]

]
.

It is easy to see that supt∈Bf (n) E[(
∫
t(X1, y)1{Y1≤y}dy)

2] ≤ ℓ(A2), and thus Lemma 1

gives that (26) is of order 1/n. Next, with Schwarz inequalities,

E

(
sup

t∈Bf (n)
(νn”(t))2

)

≤ 1

nf2
0

∑

j,j′,k,k′

E

[
ϕ2

j (X1)ϕ
2
j′(X1)(

∫
ψk(y)1{Y1≤y}dy)

2(

∫
ψk′(y)1{Y1≤y}dy)

2

]

≤ ℓ(A2)
2φ2

1(D
(1)
n )2

nf2
0

.

It follows that this term is bounded if D(1)
n ≤ n1/2. This implies that (27) is also of order

1/n. Gathering both terms (on ΩG and Ωc
G) gives Inequality (24).

Then, with θ = 3ρ, inequalities (22) and (23) yield

(28) E
(
‖F̃ − F1A‖2

n1Ωρ

)
≤ 5‖fX‖∞‖Fm1 − F1A‖2 + 6pen(m1) +

18ρ(C + C1)

n
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The penalty term pen(m1) has to verify pen(m1)+pen(m′) ≥ 12ρMD(1)(m1,m
′)/n i.e.

12ρM max(D
(1)
m1 ;D

(1)
m′ ))/n ≤ pen(m1)+pen(m′), where M = ℓ(A2) in the uncensored case

and M = ℓ(A2)/cG or M = (ℓ(A2)φ1/f0)E(δ1/Ḡ
2(Z1)) in the censored case. We choose

ρ = 3/2 and so pen(m) = 18MD
(1)
m /n.

To bound the second term in (20), we recall that (F̂m̂(Xi, u))1≤i≤n is the orthogonal
projection of (

∑
k ŵi(

∫
ψn

k (y)1{Yi≤y}dy)ψ
n
k (u))1≤i≤n on

W = {(t(Xi, u))1≤i≤n, t ∈ S
(1)
m̂ ⊗ S(2)

n },

and that PW denote the orthogonal projection on W. Let moreover ‖.‖Rn denote the
Euclidean norm in Rn, X be the vector (Xi)1≤i≤n. We define

Wi,k = wi

∫
ψn

k (y)1{Zi≤y}dy, Ŵi,k = ŵi

∫
ψn

k (y)1{Zi≤y}dy for i ∈ {1, . . . , n}.

We need to study (F̂m̂(X,u)) = PW((
∑

k Ŵi,kψ
n
k (u))1≤i≤n). Let Fk(x) = E[Wi,k|Xi =

x] =
∫
F (x, y)ψn

k (y)dy, then the following regression-type equations are useful:

(29) Wi,k = Fk(Xi) + εi,k, where εi,k = Wi,k − E[Wi,k|Xi],

and

(30) Ŵi,k = Wi,k +Ri,k = Fk(Xi) + εi,k +Ri,k,

where obviously Ri,k = (
∫
ψm

k (y)1{Zi≤y}dy)(ŵi − wi) is a negligible residual term. Note
that this residual is null if there is no censoring. Then, denoting for simplicity ψn

k by ψk

hereafter, we have the decomposition

(F̂m̂(Xi, u))1≤i≤n = PW((
∑

k

Ŵi,kψk(u))1≤i≤n)

= PW((
∑

k

Fk(Xi)ψk(u))1≤i≤n) + PW((
∑

k

εi,kψk(u))1≤i≤n) + PW((
∑

k

Ri,kψk(u))1≤i≤n)

We denote by
∑

k Fk(X)ψk(u) and (F1A)(X,u) the vectors of Rn: (
∑

k Fk(Xi)ψk(u))1≤i≤n

and (F1A)(Xi, u)1≤i≤n. We denote also by εk the vector (εi,k)1≤i≤n and by Rk the vector
(Ri,k)1≤i≤n. Thus

‖F1A − F̂m̂‖2
n

=
1

n

∫
‖(F1A)(X,u) − PW(

∑

k

Fk(X)ψk(u)) − PW(
∑

k

εkψk(u)) − PW(
∑

k

Rkψk(u))‖2
Rndu

≤ 2

n

∫
‖(F1A)(X,u) − PW(

∑

k

Fk(X)ψk(u))‖2
Rndu+

2

n

∫
‖PW(

∑

k

(εk +Rk)ψk(u))‖2
Rndu

Now, we can prove the following Lemma:

Lemma 2. (1/n)
∫
‖(F1A)(X,u)−PW(

∑
k Fk(X)ψk(u))‖2

Rndu ≤ (1/n)
∫
‖F1A(X,u)‖2

Rndu.
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Therefore,

‖F1A − F̂m̂‖2
n

≤ 2

n

∫
‖F1A(X,u)‖2

Rndu+
4

n

∫
‖
∑

k

εkψk(u)‖2
Rndu+

4

n

∫
‖
∑

k

Rkψk(u)‖2
Rndu

≤ 2

n

n∑

i=1

∫
(F1A)2(Xi, u)du+

4

n

n∑

i=1

∫
[
∑

k

εi,kψk(u)]
2du+

4

n

n∑

i=1

∫
[
∑

k

Ri,kψk(u)]
2du

≤ 2 +
4

n

n∑

i=1

∑

k

ε2i,k +
4

n

n∑

i=1

∑

k

R2
i,k.

Using (6) yields,

ε2i,k ≤ 2(wi

∫
ψk(y)1{Zi≤y}dy)

2 + 2E[wi

∫
ψk(y)1{Zi≤y}dy|Xi]

2

and
∑

k

ε2i,k ≤ 2
∑

k

(
∫
ψk(y)1{Zi≤y}dy)

2

Ḡ2(Zi)
+ 2E[

∑

k

(
∫
ψk(y)1{Zi≤y}dy)

2

Ḡ2(Zi)
|Xi] ≤ 4

ℓ(A2)

c2G

On the other hand,

∑

k

R2
i,k ≤

∑

k

(

∫
ψk(y)1{Zi≤y}dy)

2 | ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

c2G
̂̄G

2
(Yi)

≤ ℓ(A2)

c2G

| ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

̂̄G
2
(Yi)

.

Thus, it follows from the previous study (and in particular from Lemma 1), that the
following inequality holds

(31) E1/2







 1

n

n∑

i=1

| ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

̂̄G
2
(Yi)




2

 ≤ κ

n
.

Using (31), we obtain

(32) E
(
‖F1A − F̂m̂‖2

n1Ωc
ρ

)
≤ 2(1 + 8

ℓ(A2)

c2G
)P(Ωc

ρ) +
4κℓ(A2)

c2Gn
P1/2(Ωc

ρ).

Now we use the following proposition proved in Brunel et al. (2008) (Proposition 3):

Proposition 3. Let ρ > 1. Then, under the assumptions of Theorem 1, there exists

C2 > 0 such that P (Ωc
ρ) ≤

C2

n3/2
.

This proposition implies that E
(
‖F1A − F̂m̂‖2

n1Ωc
ρ

)
≤ C3

n
.

Now we use (28) and we observe that this inequality holds for all m1 in Mn, so

E‖F̃ − F1A‖2
n ≤ C inf

m∈Mn

(‖F1A − Fm‖2 + pen(m)) +
C4

n

with C = max(5‖fX‖∞, 6).
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5.3. Proof of Proposition 2. Let Γi(t) = δi/Ḡ(Yi)
∫
t(Xi, y)1{Yi≤y}dy−

∫
t(Xi, y)F (Xi, y)dy.

Then νn(t) = (1/n)
∑n

i=1 Γi(t). The proof of Proposition 2 relies on (6) and on the fol-
lowing result:

Lemma 3. (Talagrand (1996))
Let U1, . . . , Un i.i.d. variables and (ζt)t∈B a set of functions and B is a unit ball of a finite
dimensional subspace of L2(A). Let νn(t) = (1/n)

∑n
i=1[ζt(Ui) − E(ζt(Ui))]. We suppose

that
(i) sup

t∈B
‖ζt‖∞ ≤M1, (ii) E(sup

t∈B
|νn(t)|) ≤ H, (iii) sup

t∈B
Var[ζt(U1)] ≤ v.

Then, there exists K > 0, K1 > 0, K2 > 0 such that

E

[
sup
t∈B

ν2
n(t) − 2H2

]

+

≤ K

[
v

n
e−K1

nH2

v +
M2

1

n2
e
−K2

nH
M1

]

Here ζt(u, v, δ) = δ
∫
t(x, y)1{v≤y}dy/Ḡ(v) −

∫
t(u, y)F (u, y)dy and B = Bf (m′). We

now compute the constants M1, H and v involved in (i), (ii), (iii).
(i) We recall that in general, Sm + Sm′ is included in the model Sm′′ with dimension

max(D
(1)
m1 , D

(1)
m′

1
) max(D

(2)
m2 , D

(2)
m′

2
). Here, the space Sm + Sm′ = S

(1)
m1 ⊗ S(2)

n + S
(1)
m′ ⊗ S(2)

n is

a space of the collection included in S∗
m1,m′ ⊗S(2)

n (where S∗
m1,m′ is the largest of S

(1)
m1 and

S
(1)
m′ ) and has dimension max(D

(1)
m1 , D

(1)
m′ )D(2)

n . Let (ϕ̄j ⊗ ψn
k )(j,k) be an orthonormal basis

of this space w.r.t. ‖.‖f and let t ∈ Bf (m′).

|δ
∫
t(u, y)1{v≤y}dy/Ḡ(v)| ≤ 1

cG
|
∑

j,k

aj,kϕ̄j(u)

∫
ψn

k (y)1{v≤y}dy|

≤ 1

cG




∑

j,k

a2
j,k

∑

j

ϕ̄2
j (u)

∑

k

(∫

A2

ψn
k (y)1{v≤y}dy

)2



1/2

≤ 1

cG
‖t‖f



ℓ(A2)
∑

j

ϕ̄2
j (u)




1/2

with (6),

≤

√
φ1ℓ(A2)max(D

(1)
m1 , D

(1)
m′ )√

f0cG
.

Analogously,

|
∫
t(u, y)F (u, y)dy| = |

∑

j,k

aj,kϕ̄j(u)

∫
ψn

k (y)F (u, y)dy|

≤




∑

j,k

a2
j,k

∑

j

ϕ̄2
j (u)

∑

k

(∫
ψn

k (y)F (u, y)dy

)2



1/2

≤ ‖t‖f



ℓ(A2)
∑

j

ϕ̄2
j (u)




1/2

with (6),

≤

√
ℓ(A2)φ1 max(D

(1)
m1 , D

(1)
m′ )

f0
.
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Therefore

sup
t∈B

‖ζt‖∞ ≤ (1/cG + 1)
√
φ1ℓ(A2)√

f0

√
max(D

(1)
m1 , D

(1)
m′ ).

Then we set M1 =
(1/cG + 1)

√
φ1ℓ(A2)√

f0

√
max(D

(1)
m1 , D

(1)
m′ ).

(ii) Var[ζt(U1)] = E
(
[Γ1(t)]

2
)

≤ E

[(∫
t(X1, y)1{Y1≤y}dy

Ḡ(Y1)

)2
]

≤ 1

cG
E

[∫
t2(X1, y)1{Y1≤y}dy

]

=
1

cG

∫∫∫
t2(x, y)1{u≤y}π(x, u)fX(x)dxdydu

=
1

cG

∫∫
t2(x, y)F (x, y)fX(x)dxdy ≤

‖t‖2
f

cG
.

Then v =
1

cG
.

(iii) Let (ϕ̄j ⊗ ψk)(j,k) be as previously.

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

E(ν2
n(ϕ̄j ⊗ ψk)) =

∑

j,k

1

n2
E




(

n∑

i=1

Γi(ϕ̄j ⊗ ψk)

)2




=
∑

j,k

1

n
E
(
Γ2

1(ϕ̄j ⊗ ψk)
)
.

In the uncensored case, we find

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

1

n
E

(
ϕ̄2

j (X1)

(∫
ψk(y)1{Y1≤y}dy

)2
)

=
∑

j,k

1

n

∫∫ (
ϕ̄2

j (x)

(∫
ψk(y)1{v≤y}dy

)2
)
π(x, v)fX(x)dxdv

≤ 1

n

∑

j

∫∫
ϕ̄2

j (x)

(∫

A2

1{v≤y}dy

)
π(x, v)fX(x)dxdv

≤ 1

n

∑

j

∫
ϕ̄2

j (x)

∫

A2

(∫
1{v≤y}π(x, v)dv

)
fX(x)dxdy

≤ 1

n

∑

j

∫
ϕ̄2

j (x)

(∫

A2

F (x, y)dy

)
fX(x)dx

≤ ℓ(A2)

n

∑

j

∫
ϕ̄2

j (x)fX(x)dx =
ℓ(A2)max(D

(1)
m1 , D

(1)
m′ )

n
.
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In the censored case, the bound becomes ℓ(A2)max(D
(1)
m1 , D

(1)
m′ )/(ncG). But, in order to

avoid the constant cG which would be uneasy to estimate, it is also possible to bound the
term differently. Take (ϕj ⊗ψn

k )j,k an orthonormal w.r.t. the standard L2 scalar product.

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

1

nf0
E

(
δ1ϕ

2
j (X1)

(∫
ψn

k (y)1{Z1≤y}dy
)2

Ḡ2(Z1)

)
≤ ℓ(A2)

nf0
E

(
δ1‖
∑

j ϕ
2
j‖∞

Ḡ2(Z1)

)

≤ E

(
δ1

Ḡ2(Z1)

)
ℓ(A2)φ1

f0

max(D
(1)
m1 , D

(1)
m′ )

n
.

Then E(sup
t∈B

ν2
n(t)) ≤ M max(D

(1)
m1 , D

(1)
m′ )/n and H2 = M max(D

(1)
m1 , D

(1)
m′ )/n with M =

ℓ(A2) in the uncensored case or M = ℓ(A2)/cG or M = (ℓ(A2)φ1/f0)E(δ1/Ḡ
2(Z1)) in the

censored case. We set D(1)(m1,m
′) = max(D

(1)
m1 , D

(1)
m′ )

According to Lemma 3, there exists K ′ > 0, K1 > 0, K ′
2 > 0 such that

E

[
sup

t∈Bf (m′)
ν2

n(t) − 2H2

]

+

≤ K ′
[

1

n
e−K1D(1)(m1,m′) +

1

n
e−K′

2

√
n

]
.

So, if p(m1,m
′) = 2H2 = 2MD(1)(m1,m

′)/n,

∑

m′∈Mn

E

[
sup

t∈Bf (m′)
ν2

n(t) − p(m1,m
′)

]

+

≤ K ′

n




∑

m′∈Mn

(e−K1D(1)(m1,m′) + e−K′
2

√
D(1)(m1,m′))



 ≤ A1

n
,

as D(1)(m1,m
′) ≤ D(1)

n ≤ n and the result follows. �

5.4. Proof of Lemma 2. First, remark that, for any t ∈ S
(1)
m1⊗S(2)

m2 , we can write t(x, y) =∑
k tk(x)ψ

m2
k (y) where tk(x) =

∫
t(x, u)ψm2

k (u)du. Then, if we denote PW((
∑

k Fk(Xi)ψ
n
k (u))1≤i≤n) =

(sF (Xi, u))1≤i≤n, and sF (Xi, u) =
∑

k sF,k(Xi)ψ
n
k (u), we know that, for any function

s ∈ S
(1)
m1 ⊗ S(2)

n and any u ∈ A2,

n∑

i=1

(
∑

k

sk(Xi)ψ
n
k (u))(

∑

k

Fk(Xi)ψ
n
k (u)) =

n∑

i=1

(
∑

k

sk(Xi)ψ
n
k (u))(

∑

k

sF,k(Xi)ψ
n
k (u)).

Therefore, integrating w.r.t. u and setting s = sF yields:

1

n

n∑

i=1

(
∑

k

sF,k(Xi)Fk(Xi)

)
=

1

n

n∑

i=1

∑

k

s2F,k(Xi)

=
1

n

∫
‖PW((

∑

k

Fk(X)ψn
k (u))‖2

Rndu.
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Therefore

〈F1A(X,u), PW((
∑

k

Fk(Xi)ψk(u)〉n =
1

n

∫ n∑

i=1

F (Xi, u)
∑

k

sF,k(Xi)ψ
n
k (u)du

=
1

n

n∑

i=1

∑

k

(∫
F1A(Xi, u)ψ

n
k (u)du

)
sF,k(Xi)

=
1

n

∑

k

n∑

i=1

Fk(Xi)sF,k(Xi)

=
1

n

∫
‖PW(

∑

k

Fk(X)ψn
k (u))‖2

Rndu.

This in turn implies that

1

n

∫
‖F1A(X,u) − PW(

∑

k

Fk(X)ψn
k (u))‖2

Rndu

=
1

n

∫
‖F1A(X,u)‖2

Rndu− 1

n

∫
‖PW(

∑

k

Fk(X)ψn
k (u))‖2

Rndu.

This gives the result of Lemma 2. �

5.5. Proof of Corollary 1. To control the bias term, we state the following lemma proved
in Lacour (2007) and following from Hochmuth (2002) and Nikol’skii (1975):

Lemma 4. Let h be a function and A = A1×A2 be a product of compact sets, and assume
that h1A = hA belongs to Bα

2,∞(A). We consider that S′
m is one of the following spaces

on A:

• a space of piecewise polynomials of degrees bounded by si > αi − 1 (i = 1, 2) based
on a partition with rectangles of sidelengthes 1/Dm1 and 1/Dm2,

• a linear span of {φλψµ, λ ∈ ∪m1
0 Λ(j), µ ∈ ∪m2

0 M(k)} where {φλ} and {ψµ} are
orthonormal wavelet bases of respective regularities s1 > α1 − 1 and s2 > α2 − 1
(here Dmi

= 2mi , i = 1, 2),
• the space of trigonometric polynomials with degree smaller than Dm1 in the first

direction and smaller than Dm2 in the second direction.

Let h′m be the orthogonal projection of hA = h1A on S′
m. Then, there exists a positive

constant C0 such that
(∫

A
|hA − h′m|2

)1/2

≤ C0[D
−α1
m1

+D−α2
m2

].

If we choose for S′
m the set of the restrictions to A of the functions of S

(1)
m1 ⊗ S(2)

n and
FA the restriction of F to A, we can apply Lemma 4. But F ′

m is also the restriction to A
of Fm so that

‖F1A − Fm‖ ≤ C0[(D
(1)
m1

)−α1 + (D(2)
n )−α2 ].

According to Theorem 1

E‖F̃ − F1A‖2
n ≤ C ′′ inf

m1∈Mn

{
(D(1)

m1
)−2α1 + n−1 +

D
(1)
m1

n

}
,
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provided that D(2)
n ≥ √

n and α2 > 1.

In particular, if m∗ is such that Dm∗
1

= ⌊n
1

2α1+1 ⌋ then

E‖π̃ − π1A‖2
n ≤ C ′′′

{
D−2α1

m∗
1

+
Dm∗

1

n

}
= O

(
n
− 2α1

2α1+1

)
.

5.6. Proof of Theorem 2. The proof follows the one of Lacour (2007). Let ψ be a
regular wavelet with compact support. For J = (j1, j2) ∈ Z2 to be chosen below and

K = (k1, k2) ∈ Z2, we set ψJK(x, y) = 2(j1+j2)/2ψ(2j1x− k1)ψ(2j2y − k2) and

ΨJK(x, y) =

∫ y

−∞
ψJK(x, u)du = 2(j1−j2)/2ψ(2j1x− k1)Ψ(2j2y − k2),

where Ψ(y) =
∫ y
−∞ ψ(u)du. Now we set RJ the maximal subset of Z2 such that

Supp(ψJK) ⊂ A ∀K ∈ RJ , Supp(ψJK) ∩ Supp(ψJK′) = ∅ if K 6= K ′.

Note that the ΨJK have the same support that the ψJK , since
∫
ψ = 0. The cardinal of

RJ is |RJ | = c2j1+j2 , with c a positive constant which depends only on A and the support

of ψ. Let, for all ε = (εK) ∈ {−1, 1}|RJ |,

Fε(x, y) = |B|−1

∫ y

−∞
1B(u)du+

1√
n

∑

K∈RJ

εKΨJK(x, y),

with B a compact set such that A ⊂ B ×B, inf(B) = inf(A2) and |B| large enough to be
specified later. Let us denote by G the set of all such Fε.

We want to show that G ⊂ B. Clearly, all Fε are continuous with limit 0 in −∞ and
+1 in ∞. In addition,

∂Fε

∂y
(x, y) = |B|−1

1B(y) +
1√
n

∑

K∈RJ

εKψJK(x, y).

Then, if (x, y) /∈ A, ∂Fε

∂y ≥ 0. If (x, y) ∈ A, ∂Fε

∂y ≥ |B|−1 − 2(j1+j2)/2‖ψ‖2
∞/

√
n and then

∂Fε

∂y ≥ |B|−1/2 > 0 as soon as

Condition C1:

(
2j1+j2

n

)1/2

≤ |B|−1

2‖ψ‖2∞
.

Thus, if the Condition C1 is verified, ∂Fε

∂y ≥ 0 and Fε is non decreasing. We now have to

bound ‖Fε‖Bα

2,∞(A). We can write

‖F‖Bα

2,∞(A) ≤ |B|−1‖
∫ y

−∞
1B(u)du‖Bα

2,∞(A) +
1√
n
‖
∑

K∈RJ

εKΨJK‖Bα

2,∞(A).

To compute these quantities, we use Lemma 5 proved below. First

‖
∫ y

−∞
1B(u)du‖Bα

2,∞(A) = ‖
∫ y

−∞
1B(u)du‖A + |

∫ y

−∞
1B(u)du|Bα

2,∞(A)

≤ ‖y − inf(B)‖A + C|1B(y)|
B

(α1,α2−1)
2,∞ (A)

=

( |A1||A2|3
3

)1/2
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Moreover, using Lemma 5,

‖
∑

K∈RJ

εKΨJK‖Bα

2,∞(A) = ‖
∑

K∈RJ

εKΨJK‖A + |
∑

K∈RJ

εKΨJK |
B

(α1,α2)
2,∞ (A)

≤ ‖
∑

K∈RJ

εKΨJK‖A + [1 ∨ max
K∈RJ

(‖gK‖A2‖g′K‖−1
A2

)]|
∑

K∈RJ

εKψJK |
B

(α1,α2−1)
2,∞ (A)

with gK(y) = 2−j2/2Ψ(2j2y − k2). Hochmuth (2002) proves that for ψ smooth enough

|∑K∈RJ
εKψJK |

B
(α1,α2−1)
2,∞ (A)

≤ (2j1α1 + 2j2(α2−1))‖∑K∈RJ
εKψJK‖A. Then

‖
∑

K∈RJ

εKΨJK‖Bα

2,∞(A) ≤ ‖
∑

K∈RJ

εKΨJK‖A

+(1 ∨ 2−j2‖Ψ‖)(2j1α1 + 2j2(α2−1))‖
∑

K∈RJ

εKψJK‖A

For the latter term of the right-hand-side of the previous inequality, we have

‖
∑

K∈RJ

εKψJK‖2
A =

∑

K∈RJ

|εK |2 = c2j1+j2

and for the first one

‖
∑

K∈RJ

εKΨJK‖2
A =

∑

K∈RJ

|εK |2‖ΨJK‖2
A = c2j1+j22−2j2‖Ψ‖2,

as

‖ΨJK‖2
A =

∫∫

A
2j1 |ψ(2j1x− k1)|22−j2 |Ψ(2j2y − k2)|2dxdy

= 2−2j2

∫∫
|ψ(x)|2|Ψ(y)|2dxdy = 2−2j2‖Ψ‖2.(33)

It follows that:

‖
∑

K∈RJ

εKΨJK‖Bα

2,∞(A) ≤ (1 ∨ 2−j2‖Ψ‖)(1 + 2j1α1 + 2j2(α2−1))c1/22(j1+j2)/2.

Finally

‖F‖Bα

2,∞(A) ≤ |B|−1

( |A1||A2|3
3

)1/2

+
1 ∨ 2−j2‖Ψ‖√

n
(1 + 2j1α1 + 2j2(α2−1))c1/22(j1+j2)/2.

We take B such that |B| ≥ (2/L)
(
|A1||A2|3/3

)1/2
so that

|B|−1

( |A1||A2|3
3

)1/2

≤ L

2

and from now on, we suppose that Condition C2 is verified where

Condition C2:
(1 + 2j1α1 + 2j2(α2−1))2(j1+j2)/2

√
n

≤ L

2
√
c(1 ∨ 2−j2‖Ψ‖) .

Then for all ε, Fε ∈ B.
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For ε ∈ {−1, 1}|RJ |, put ε∗K = (ε′I)I∈RJ
such that ε′I = εI if I 6= K and ε′I = −εI if

I = K. Let also the likelihood ratio

Λn(ε∗K , ε) =
n∏

i=1

πε∗K
(Xi, Yi)

πε(Xi, Yi)

denoting, for all ε, πε(x, y) = ∂Fε

∂y (x, y) the conditional density associated to Fε. With the

same proof as for Lemma 10.2 p.160 in Härdle et al. (1998), we can prove the following
result: if there exist λ > 0 and p0 such that PFε,f (Λn(ε∗K , ε) > e−λ) ≥ p0, then, for any

estimator F̂n,

max
Fε∈G

EFε,f‖F̂n − Fε‖2
A ≥ |RJ |

2
δ2e−λp0

where δ = infε6=ε′ ‖Fε −Fε′‖A/2. It is proved in Lacour (2007) section 7.5 that, if 2j1+j2 =

o(n), Pπε(Λn(ε∗K , ε) > e−λ) ≥ p0 (the context is slightly different but it is sufficient to
replace Xi+1 by Yi and to bound f by ‖f‖∞).

Let us now compute δ = infε6=ε′ ‖Fε−Fε′‖A/2 = ‖εKΨJK/
√
n‖A = ‖ΨJK‖A /

√
n. Since

it follows from (33 that ‖ΨJK‖2
A = 2−2j2‖Ψ‖2, we set δ = 2−j2‖Ψ‖/√n.

Now for all n we choose J = J(n) = (j1(n), j2(n)) such that

c1/2 ≤ 2j1n
− 1

2α1+1 ≤ c1 and c2/2 ≤ 2j2 ≤ c2

with c1 and c2 such that
√
c1c2 ≤ |B|−1/(2‖ψ‖2

∞) so that Condition C1 is satisfied, and

such that (1+cα1
1 +cα2−1

2 )
√
c1c2 ≤ L/(2c1/2(1∨2−j2‖Ψ‖)) so that Condition C2 is satisfied.

Then we have

|RJ |δ2 = c‖Ψ‖2 2j1−j2

n
≥ cc1c2

2
‖Ψ‖2n

− 2α1
2α1+1 .

Thus

max
Fε∈G

EFε,f‖F̂n − Fε‖2
A ≥ ce−λp0c1c2

4
‖Ψ‖2n

−2α1
2α1+1 .

And then for all estimator

sup
F∈B

EF,f‖F̂n − F‖2
A ≥ Cn

− 2α1
2α1+1

with C = ce−λ‖Ψ‖2p0c1c2/4.
�

Lemma 5. Let α1 > 0, α2 > 1. For any functions (fi)i∈I and any differentiable functions
(gi)i∈I such that (gi)i∈I and (g′i)i∈I are orthogonal families,

|
∑

i∈I

fi ⊗ gi|B(α1,α2)
2,∞ (A)

≤ 1 ∨ max
i∈I

(‖gi‖A2‖g′i‖−1
A2

)

∣∣∣∣∣
∑

i∈I

fi ⊗ g′i

∣∣∣∣∣
B

(α1,α2−1)
2,∞ (A)

Proof of Lemma 5: Let r2 an integer strictly larger than α2 and r1 an integer strictly
larger than α1. Using the definition

|
∑

i∈I

fi⊗gi|B(α1,α2)
2,∞ (A)

= t−α1 sup
|h|≤t

∥∥∥∥∥∆
r1
1,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥
A

r1
h,1

+t−α2 sup
|h|≤t

∥∥∥∥∥∆
r2
2,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥
A

r2
h,2

We now bound these two terms.
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• First ∆r1
1,h(
∑

i∈I fi⊗gi) =
∑

i∈I(∆
r1
h fi)⊗gi and ∆r1

1,h(
∑

i∈I fi⊗g′i) =
∑

i∈I(∆
r1
h fi)⊗g′i

where ∆r
h(f)(x) =

∑r
k=0(−1)r−k

(
r
k

)
f(x+ kh)

Then
∥∥∥∥∥∆

r1
1,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥

2

A
r1
h,1

=

∫∫

A
r1
h,1

(
∑

i∈I

(∆r1
h fi) ⊗ gi

)2

=
∑

i∈I

∫
(∆r1

h fi)
2

∫
g2
i

using the orthogonality of (gi)i∈I . Hence,

∥∥∥∥∥∆
r1
1,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥

2

A
r1
h,1

≤ max
i∈I

(
‖gi‖2

A2
‖g′i‖−2

A2

)∑

i∈I

∫
(∆r1

h fi)
2

∫
(g′i)

2

≤ max
i∈I

(
‖gi‖2

A2
‖g′i‖−2

A2

)∫∫

A
r1
h,1

(
∑

i∈I

(∆r1
h fi) ⊗ g′i

)2

using this time the orthogonality of (g′i)i∈I . So

t−α1 sup
|h|≤t

∥∥∥∥∥∆
r1
1,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥
A

r1
h,1

≤ max
i∈I

(
‖gi‖A2‖g′i‖−1

A2

)
t−α1 sup

|h|≤t

∥∥∥∥∥∆
r1
1,h(
∑

i∈I

fi ⊗ g′i)

∥∥∥∥∥
A

r1
h,1

• For the direction y, we can write

∆r2
2,h(
∑

i∈I

fi ⊗ gi) =
∑

i∈I

fi ⊗ ∆r2
h (gi)

But

∆r2
h (gi)(y) =

r2∑

k=0

(−1)r2−k

(
r2
k

)
gi(y + kh)

=

r2−1∑

k=0

(−1)r2−1−k

(
r2 − 1

k

)
[gi(y + (k + 1)h) − gi(y + kh)]

=

r2−1∑

k=0

(−1)r2−1−k

(
r2 − 1

k

)
h

∫ 1

0
g′i(y + kh+ th)dt

= h

∫ 1

0
∆r2−1

h (g′i)(y + th)dt

Then we obtain
∥∥∥∥∥∆

r2
2,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥

2

A
r2
h,2

=

∫∫

A
r2
h,2

(
h

∫ 1

0
∆r2−1

2,h (
∑

i∈I

fi ⊗ g′i)(x, y + th)dt

)2

dxdy

≤ h2

∫∫

A
r2
h,2

∫ 1

0
(∆r2−1

2,h (
∑

i∈I

fi ⊗ g′i)(x, y + th))2dtdxdy
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using the Schwartz inequality. By inverting the integrals, we get
∥∥∥∥∥∆

r2
2,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥

2

A
r2
h,2

≤ h2

∫ 1

0

∫∫

A
r2
h,2

(∆r2−1
2,h (

∑

i∈I

fi ⊗ g′i)(x, y + th))2dxdydt

≤ h2

∫ 1

0

∫∫

A
r2−1
h,2

(∆r2−1
2,h (

∑

i∈I

fi ⊗ g′i)(x, z))
2dxdzdt

≤ h2

∥∥∥∥∥∆
r2−1
2,h (

∑

i∈I

fi ⊗ g′i)

∥∥∥∥∥

2

A
r2−1
h,2

It follows that

t−α2 sup
|h|≤t

∥∥∥∥∥∆
r2
2,h(
∑

i∈I

fi ⊗ gi)

∥∥∥∥∥
A

r2
h,2

≤ t1−α2 sup
|h|≤t

∥∥∥∥∥∆
r2−1
2,h (

∑

i∈I

fi ⊗ g′i)

∥∥∥∥∥
A

r2−1
h,2

Finally

|
∑

i∈I

fi ⊗ gi|B(α1,α2)
2,∞ (A)

≤ max
i∈I

(
‖gi‖A2‖g′i‖−1

A2

)
t−α1 sup

|h|≤t

∥∥∥∥∥∆
r1
1,h(
∑

i∈I

fi ⊗ g′i)

∥∥∥∥∥
A

r1
h,1

+t1−α2 sup
|h|≤t

∥∥∥∥∥∆
r2−1
2,h (

∑

i∈I

fi ⊗ g′i)

∥∥∥∥∥
A

r2−1
h,2

≤ max(1,max
i∈I

(
‖gi‖A2‖g′i‖−1

A2

)
)|
∑

i∈I

fi ⊗ g′i|B(α1,α2−1)
2,∞ (A)

which yields the result. �
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