Periodic homogenization for convex functionals using Mosco convergence - Archive ouverte HAL
Article Dans Une Revue Ricerche di matematica Année : 2008

Periodic homogenization for convex functionals using Mosco convergence

Résumé

We study the relationship between the Mosco convergence of a sequence of convex proper lower semicontinuous functionals, defined on a reflexive Banach space, and the convergence of their subdifferentiels as maximal monotone graphs. We then apply these results together with the unfolding method (see \cite{CioranescuDamlamianGriso2002}) to study the homogenization of equations of the form $-\textrm{ div }d_\varepsilon=f $, with $(\nabla u_\varepsilon(x),d_\varepsilon(x)) \in \partial \varphi_\varepsilon(x)$ where $\varphi_\varepsilon (x,.)$ is a Carathéodory convex function with suitable growth and coercivity conditions.
Fichier principal
Vignette du fichier
ssdiffversionpreprintmap5.pdf (374.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00267473 , version 1 (27-03-2008)

Identifiants

  • HAL Id : hal-00267473 , version 1

Citer

Alain Damlamian, Nicolas Meunier, Jean van Schaftingen. Periodic homogenization for convex functionals using Mosco convergence. Ricerche di matematica, 2008, 57 (2), pp.209-249. ⟨hal-00267473⟩
96 Consultations
298 Téléchargements

Partager

More