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Periodic homogenization for convex functionals
using Mosco convergence

Alain Damlamian® Nicolas Meunier! and Jean Van Schaftingen?

27 mars 2008

Résumé

Nous étudions les liens entre la convergence de Mosco pour des
suites de fonctions convexes propres semi-continues inférieurement définies
sur un espace de Banach réflexif et la convergence des suites des sous-
différentiels vus comme opérateurs maximaux monotones. Nous ap-
pliquons ces résultats pour étudier 'homogénéisation par la méthode
de I’éclatement (voir [E]) des équations de la forme — div d. = f, avec
(Vue(z),d:(z)) € dpc(x,.) et ol p(z,.) est une fonction convexe de
Carathéodory satisfaisant des conditions de croissance et de coercivité
appropriées.

Abstract

We study the relationship between the Mosco convergence of a se-
quence of convex proper lower semicontinuous functionals, defined on
a reflexive Banach space, and the convergence of their subdifferentiels
as maximal monotone graphs. We then apply these results together
with the unfolding method (see [[0]) to study the homogenization of
equations of the form — div d. = f, with (Vu.(z),d.(z)) € Op.(z)
where ¢.(z,.) is a Carathéodory convex function with suitable growth
and coercivity conditions.

1 Introduction

In this paper, we consider the homogenization of the problem

—divd. = f in Q,
(Vue(z),d-(x)) € Op=(z) inQ, (1.1)
ue =0 on 012,
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where . : Q2 x RV — R is Carathéodory and ¢.(z,-) is convex. The
subdifferential of ¢.(z,-) is a multivalued map whose graph is dy.(z) C
RY xR". The solutions of this problem are the minimizers of the functional

UH/Q%(x,vu(x)) dx—/gf(x)u(x) da.

Thus, under suitable growth and coerciveness assumptions on ., this prob-
lem has at least one solution. This solution need not be unique. The homog-
enization problem has been addressed since the late 1970’s via the theory of
I"-convergence.

In a previous paper [[4], we considered the homogenization of

divde. = f in Q, (12)
(Vue(z),de(2)) € Ac(z),

where A, : Q — M(RY x RY) is a measurable map taking its value in the
set M(RY x RN) of maximal monotone graphs from RY to R™. Under
suitable growth and coerciveness assumptions, this problem has a least one
solution which need not to be unique [§, [7]. There are many papers in the
litterature on the study of GG-convergence and homogenization which concern
the non-linear case. We only refer to [f]] and the bibliography therein.

The application of the unfolding method to problem ([[.9) lead us to the
topic of convergence of maximal monotone operators. This subject was ac-
tively developed in the 1970’s, most particularly in the Hilbert space setting
M, B, H. It had been studied at the time by the first author in the case of
reflexive Banach space and lead to a paper that was never submitted for
publication [[2].

In [[[4], particular attention was given to the relationship between point-
wise and global convergence of graphs. More precisely, if A4, A4, : Q —
M(X x X') are measurable maps whose values are maximal monotone op-
erators, one can define the operators

A = {(u,v) € LP(; X) x LY X') | (u(t),v(t)) € An(t) for ae. t € Q}

and A similarly. We looked for conditions under which the convergence
Ap(t) — A(t) for almost every t € Q implies A, — A. Since subdif-
ferentials of lower semicontinuous convex functions are maximal monotone
graphs, problem ([.T]) is a special case of problem ([.4). The convergence
of the subdifferentials (in the sense of graphs) is equivalent to the Mosco
convergence of the associated (normalized) convex functionals. This case
was treated in the reflexive Banach space setting in the unpublished paper
M. If v, 00 : 2 x X — RU {400} are normal convex integrands, define

(W) = [ el u(z) da
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and I, similarly. In Theorem B.13, we give sufficient conditions for the

Mosco convergence @, (t, .) M, ¢(t,.) to implie that of I, M, I, and thus
the convergence of the induced graphs A, , where

Ap, = {(u,v) € LP(4; X) x LI X) | (u(t),v(t)) € dpyn(t) for ae. t € Q}.

Then, ([.T]) can be treated using Mosco convergence in the general setting of
a normal convex integrand. Interestingly enough, the obtained result differs
from the one which follows the application of the theory of I'-convergence,
classically used with the strong topology on a space of type LP together with
a coerciveness hypothesis (thus implying that the effective domains of the
functions remain included in the corresponding WP space).

The outline of the paper is as follows. Section 2 recalls the definition of
maximal monotone operators, subdifferentials, the convergence of maximal
monotone graphs and the Mosco convergence. In section 3, using [[9], we
consider the integration of normal convex integrands and we prove key re-
sults about the Mosco convergence of functions and the Mosco convergence
of the associated integral functional. In section 4 we recall the definition of
the unfolding operator, averaging operator and the corresponding conver-
gence properties (cf. [I0], [L3]). The statements can also be found in [1]
and [0]. Finally, we consider the homogenization problem in section 5.

Some of the results of this paper were announced in [R{] and [14].

2 The subdifferentials of Convex functions as max-
imal monotone graphs

In this section we recall basic facts about convex functions, their sub-
differentials and we examine the relationship between the convergence of
convex functions and convergence of their subdifferentials.

2.1 Subdifferentials of convex functions

We shall work in the framework of a reflexive Banach space X whose
dual is X’. The norms on X and X’ are denoted by |||/ x, ||-||x respectively
(or |||l when no confusion arises), and the duality pairing of X’ and X by
(-,-). Since X is reflexive, there is an equivalent norm on X which is locally
uniformly convex as well as its dual [7. We shall therefore assume that
such a norm is used from now on, so that X and X’ are locally uniformly
convex. Let X be a Banach space. Its norm is locally uniformly convex
whenever the following holds:

§+¢

VEE X, Ve > 0,30 >0, ¥ € X, [[>o—= | > max([l¢]], lIKI)—0 = flz—yll <e.



The main property of such a locally uniformly convex norm is the following
well-known result:

Proposition 2.1. Let X be a Banach space with a locally uniformly convex
norm. Then the strong convergence in X is equivalent to the weak conver-
gence together with the convergence of the norms:

§n = & = & — & and [[&a]| — €]]-

This is the only property, consequence of local uniform convexity, which
will be used both in X and in X’. It is of course satisfied in the case of
uniformly convex spaces, and in particular for L? spaces for 1 < p < oo.

The duality mapping F': X — X’ maps each ¢ € X to F(£) € X’ such
that ||[F(&)|x = |€]lx and (F(£),€) = [|€]%- By local uniform convexity,
F is single-valued and monotone as well as its inverse (which is the duality
mapping from X’ to X) and both are homeomorphism.

We can now turn to convex functions defined on X. A function ¢: X —
R U {400} will be said to be proper if (X)) # {+o0}. Its epigraph is

epi p ={(§,7) € X x RU{+o00} : ¢(¢) <7}

The epigraph is a non empty closed convex subset if and only if ¢ is a proper
lower semicontinuous convex function. The effective domain of ¢ is defined
by

D(p) ={¢€X: o) € R}.

Definition 2.2. The subdifferential dp at £ € D(y) of the function ¢ :
X — RU{+o0} is the set

(&) ={ne X" : Ve X, o) >+ nc—8&}.

Remark 1. The definition of subdifferential does not require that the func-
tion ¢ be convex, only that it be proper. It is worth to note that, in this
generality, ¢ attains its minimum at £ € X if and only if 0 € 9dp(§).

Definition 2.3. For A > 0 and ¢ € X, define ¢, as the following inf-
2
conwvolution of the two functions ¢ and %

ox(€) = inf pe) + LS
cex 2\
Lemma 2.4. Let ¢ : X — R U {+o0} be a lower semicontinuous proper
convex function. For every A > 0, py € CY(X,R), and for every £ € X,
there exists a unique & € X such that

. 2
L le=gl

ex(€) = p(&r) TN



or equivalently

ATIF(E =€) € 0p(6)) d-e. &= Ex+ FH(Any) with gy € dp(&y).  (2.1)

Moreover, for every & in D(p), {&x — & as A — 0 and

li = li = .
lim @A (§) = lim (&) = ¢(€)
Definition 2.5. Following the standard notations of maximal monotone op-
erator theory, for every £ € X, the vector &) from the Lemma P.4 is denoted
Jf“’@) and the map Jf“’ is called the (A—)resolvant for dp. Similarly, n) is
denoted dpy(§), and the map Jy) is the Yosida approximation of d¢p.

The proof of the previous Lemma is a classical generalization of the same
result in the Hilbert case. For the convenience of the reader we recall it here.

Proof of Lemma B-4. For fixed £ € X and A > 0, the strict convexity of the
norm implies the uniqueneness of £,. To prove the existence of &y, let &y 5,

be a minimizing sequence for ¢ — ¢(¢) + w, ie.

6 — &l

) or(§) as n — +o0.

p(éan) +
Since ¢ is lower semi-continuous convex and proper, by Hahn-Banach’s the-
orem, it is bounded below on X by a continuous affine function, hence @) (£)
is finite for every £ € X and A > 0. By the same argument,

I ~ nall®

2 < oa(§) +alléxnll + b, (2.2)

so the sequence (&) n)n>1 is bounded. One can extract a weakly convergent
subsequence : &, — &\. By weak lower semi-continuity of the norm and
of ©, lim 1nfk—>ooH£ - gk,nkH > ||£ - é—AH and liminfg oo Qp(gk,nk) > 80(5)\)
However, by the previous convergence, p(&y,,) + %Hg — & nl|? converges to
@ (€) which is bounded above by (£)) + 3x [|€ — &[>, As a consequence,

im0 9(Exm, ) = ©(Ex), limp—ool|€ = Exn, | = (€= Exll and @a(€) = @(6x)+
1€ — €12, This prove the existence of &y.

Since vy (§) < p(£), limsupy_oer(€) < (). Moreover, due to

lex — &l _

) ©xA(§) — w(6n) < @a(§) +alénll + 0,

one has £, — & as A — 0. Finally, by lower semicontinuity, we deduce that

. 2
L le=al

(&) < liminf o(&3) 2

= liminf ¢y (€). O
iminf o (€)



Definition 2.6. For p > 1, one can also define the inf-convolution ¢} , of

1P,

¢ with 7=

¢ =&l

Pap(€) = Inf o(C) + = p

which is often better suited (in particular for LP-type spaces, as in section

B)-

For p > 1, reasoning as in Lemma P.4, one can show that ¢, , belongs
to C1(X;R) and that limy_o¢x,(&) — ©(€), [[J). The case p =1 is more
complicated and we refer to [J] for details.

Proposition 2.7. For given ¢ lower semicontinuous convexr and proper on
X, for every A > 0, the maps Jf“" and Op)y, are continuous from X to X and
X' respectively. Furthermore, Oy is actually the Fréchet derivative (as well
as the subdifferential) of @y (which is why there is no need for parentheses
in the notation 0p) ).

The notations Jff; and Opy, are used for p > 1, p # 2 with similar
properties.

Proof. We give the proof for p = 2 (the case p # 2 is similar).
Consider a sequence &, — &, and use the notations £, = Ja“"(§), (&n)a =
wa( n). First,

2 2
ox(§) = @(&\) + 11§ 2§>\H ~ lim <(p( &) + H5n2 I\ >2hgl_)s£p%(§n).
(2.3)
Moreover, by (@)’
_ 2
W < @a(&n) +all(§n)all + 0,

hence the sequence ((£,)x)n>1 is bounded. Taking a subsequence ((&,, )2 )k>1

such that (&,,)x — &, and making use of both liminf, . ©((£,)x) > ¢(&o)
and lminf, o ||€, — (€n)all > 1€ — &ol| one obtains

_ 2
liminf g1 (6,) = liminf ((p((62)2) + |2 =Sl

A2

2\
> oa(§),

so that, recalling (R.), lim,, oo 0 (&n) = ©a(€). Therefore, the function
is continuous. Furthermore, from the previous equality, it follows

_ 2 12
T p(€)2) = pl&) and i 1ED =l Joo £
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Again, by local uniform convexity of the norm, one concludes that (&,)x
converges strongly to £,. So z +— Jf‘p(f) is continuous. By the continuity
of the duality map, so is £ — ) (&).

Let us now show that Op) is the Fréchet derivative of ¢,. By definition,

ATIF(E = 6)) € 9p(6n).

For every ¢ € X denote Jf“"(g ) by (). By definition of the subdifferential,
P(&) FATHF(E =€), 0 — &) < ¢(¢)) so that

2
ox(6) = plr) + L8
T L le—ale
<o) = A H(FE—-60),0— &) + o)

2 A2
= 0O+ XU - 6.6 - o) + LD el
<ea(Q) +ATHE(E =60, € =),

T g le—al
P (FE-6),C 6+ 6~ ) <
It follows that
oA (&) +FATHF(E = &)),¢ =€) < or(0). (2.4)

Exchanging the roles of x and y, this gives

PAQ) S @A) +FATHF(E =60, =)+ A HF([C =) — F(E—6),¢—¢€).

(2.5)
Since F is continuous and ¢y — &y as ¢ — &, it follows from (R.4) and (2.F)
that ¢y is Fréchet differentiable at & and its derivative is A™'F(€ — &))

doA(§).

The connection between the Yosida approximations for different values
of the parameter X is given by the next statements.

o=

Lemma 2.8. Let o and 8 be given in X, A and p positive, then

f(=— 2h € - -
(518 = P + 5ol = al) = g8 -l
Similarly, forp>1,
1 1 1
f(— |3 — £|IP oY= —— 13— alP.
I 18 = €+ gl = al?) = 18— al



Proof. The function ||-]| being Fréchet differentiable and strictly convex, the
infimum of the left-hand side is achieved at a unique point & such that
TF(B—¢) = ﬁF(S —a) (resp. e Fp(B—¢) = #Fp(é. —a)). We deduce

that (8 —£) = 16~ a), 50 £ ~ = x25(a — ) and € —a = (3~ a)
from which the conclusions follow. O

As a direct consequence, we get

Proposition 2.9. Let ¢ be lower semicontinuous convex and proper on X
and A and p be positive. Let 1 denote the Yosida approximation oy of .
Then, the Yosida approzimation 1, of ¥ is P(axtu): (Px)u = P(rtp), and the
Yosida approzimation (0py), of Opx is just 0P (ryu)-

The same is true for the modified approvimations: (©xp)up = POtu)p
and their subdifferentials.

Definition 2.10. Let ¢ : X — RU{+00} be a lower semicontinuous proper
convex function. The convez conjugate ¢* : X' — RU {400} of ¢ is defined
by
" (1) = sup((n,&) — ¢(£))-
tex

Ezample 1. For 1 < p < oo, the function ¢ : X — R : £ — %H{Hp is a
convex continuous function. Furthermore, dp(¢) = |€|P~2F(€), and, for
every n € X', p*(n) = %Hn”q, where % + % =1

Ezample 2. The following equality holds (a straightforward consequence of
the fact that the conjugate of an inf-convolution is the sum of the conju-

gates):
q
(op)" () = 9*(n) + A@

The next proposition is a well-known consequence of the Hahn-Banach
Theorem (see for example [[Lf]).

Proposition 2.11. Let ¢ : X — R U {400} be a lower semicontinuous
proper convex function, then ©* is proper, lower semicontinuous and conver,
©** = ¢ and for every (§,m) € X x X',

(&) +¢"(n) = (n,&)  (Young’s inequality)

holds, with equality if and only if (£,m) € Op. In particular,

9" ={(n,§) : (§;m) € Op}.

The following theorem of Fenchel and Rockafellar gives the relationship
between the conjugate of a function and that of its restriction to a closed
subspace.



Proposition 2.12 (Fenchel-Rockafellar). Let V C X be a closed sub-
space, ¢ : X — R U {+o00} be a lower semicontinuous convex function such
that @ is continuous at some point £ € V.. Then

nf 0(€) = — inf " (),
Bfel§) = - inf ")

where

Vi={ne X : VeV, (n& =0}

2.2 Subdifferentials as maximal monotone operators

The subdifferential of ¢ is a set-valued operator. One can consider gen-
eral set-valued operators A : X — X', that is maps which take every point
¢ € X to some subset A C X'. Traditionnaly, these applications are simply
called operators and the notation A is used to denote both the operator and
its graph, i.e. the set {(¢,n) € X x X' : n € A&}, since no confusion arises.
The domain of the operator A is

D(A) = {z € X such that Ax # 0}.
An operator A is monotone if for every (£1,m), (§2,m2) € A,

(m —m2,& — &) > 0.

It is mazimal monotone, if for every monotone operator B C X x X' such
that A C B, one has in fact A = B. For more details on maximal monotone

operators see [fi, f, f]-

We now return to convex functions and their subdifferentials and re-
call the fundamental relationship that they have with maximal monotone
operators:

Proposition 2.13 (Rockafellar [R3, R5]). Let ¢ : X — RU{+c0} be a
proper function. The function ¢ is lower semicontinuous and convex if and
only if Op is mazximal monotone.

An operator A C X x X' is said cyclically monotone if for any ¢ € N*
and for every (¢1,n1),..., (¢4, 1) € A:

¢
et — ¢l <o,
=1

where by convention &1 = ¢

Proposition 2.14 (Rockafellar [R3, R5]). Let A C X x X'. The following
are equivalent



(a) there exists a lower semicontinuous proper convex function ¢ such that
A = 0p,

(b) A is cyclically monotone and mazximal monotone.

Moreover, if ¢ and ¥ are lower semicontinuous proper convex functions such
that Op = O, then there exists ¢ € R such that ¢ = ¢ + c.

The proof is based on the following abstract “integration formula” estab-
lished in [PJ] and used therein for the construction of a ¢ such that 9y = A:
for any € and ¢ in X,

4

?(Q) = (&) = sup{ (', € — €)1 02 1,(6', ) € D,

i=1

€l = ¢ and £ = g}. (2.6)

2.3 Convergence of convex functions and of maximal mono-
tone graphs

For lower semicontinuous convex functions, the Mosco convergence was

introduced in [R1]:

Definition 2.15. Let ¢, and ¢ be lower semicontinuous convex functions
on X. The sequence (¢n)neN converges to ¢ in the sense of Mosco, (denoted

©n M, ¢) whenever the following two conditions are satisfied:

(M-i) for every £ € X, there exists a sequence (,)p>1 in X such that
&, — & strongly in X and

limsup ¢, (§) < ©(§),

n—-4o0o

(M-ii) for every sequence (&,)p>1 in X such that &, — ¢ € X weakly in

X,
lim inf @, () = ¢(€)-
Remark 2.
1. As a consequence of (M), one has ¢, (&,) — ¢(£) in (M) as n —
+00.

2. A constant sequence ¢ Mosco-converges to itself (since a lower semi-
continuous convex functions on X is weakly lower semi-continuous).

3. Any subsequence of a Mosco-convergent sequence also Mosco-converges
to the same limit.

10



By Proposition P.11], every lower semicontinuous proper convex function
is bounded below by some continuous affine function, hence by an affine
function of the norm. The following shows that the latter property is true
uniformly for a sequence converging in the sense of Mosco:

Proposition 2.16 (Mosco [21]]). Let ,,, ¢ be lower semicontinuous proper

convez functions on X such that o, M, @, then there ewists a,b € R* such
that for all n and for all £ in X,

en(§) + alléll +b = 0. (2.7)

Proof. Let ¢, converge to pin the sense of Mosco. We reason by contradic-
tion, so we assume that, for every k € N, there is some ng € N and ( € X
such that ¢, (Cx)+k(1+(|¢k]]) < 0. Since each ¢, satisfies (R.7), this implies
that ny — oo. Let £ be in D(y) and by (M-i) let &, be a sequence converging

to & with limy, o0 @n(&n) = ©(§). Set

1
l,————M—
VE (G = &g

t) = min(

) and O = t3Cr + (1 — t)én, -

By convexity,

Ony, (Uk) < thiony, (G) + (1= tx)ony (§ny) < =kt (L +[|Cell) + (1 —tk)ony (§ny)-

As k goes to oo, the following hold: ¢, — 07,¢,(, — 0, hence 95, — &.
By (M-ii), ¢(¢) < liminfy_,o ¢n, (V). At the limit & — oo, the previous
inequality implies

0 < lim inf (=K (1 + [[Ge]))) = —oo,

a contradiction. O

Remark 3. If ¢ is lower semicontinuous convex and is bounded below by an
affine function of the norm (as in (R.7))

©(&) + all&]] + b >0 for all &,
then a straightforward computation shows that for every A > 0, ¢ satisfies
Ay
ox(€) +allgll +b+ Ta* >0 forall &

The converse is obvious, since ¢ is bounded below by ¢,.
Similarly, one checks that ¢y ,(§) + al/&|| + b + %aq > 0 for all & (where

1,1
=+ = =1).
P ' q
This remark applies uniformly to a sequence which Mosco-converges.

11



Lemma 2.17. Let @, and ¢ be proper lower semicontinuous convex func-
tions on X such that o, M, p and let U C X be open. If

sup sup ¢p (§) < .
neN £eU
then v, converges uniformly to ¢ on strongly compact subsets of U.
In particular, if the sequence {¢,} is locally bounded above on X, then

its Mosco-convergence to ¢ implies that it converges locally uniformly to ¢
on X.

Proof. Tt suffices to prove that if &, — £ € U, then ¢, (&,) — ©(€).
First, by (M), we have

lim inf o, (1) > 9(£)-

To obtain the reverse inequality, start with (M—ﬂ) to exhibit a sequence
(Cn)n>1 converging strongly to & in X and such that ¢, (¢,) — ¢(&). For
every 0 < t < 1, convexity implies

gn B tCn)

By hypothesis, (¢, — t§,)/(1 — t) converges to &, so

lim sup ¢y, (§n) < tp(§) + (1 —t) sup sup ¢, (().
n—00 neN (eU

Letting t — 1~ concludes the proof. U

Remark 4. Proposition together with classical properties of convex func-
tions gives a more precise result. Under the assumptions of Lemma R.17,
the sequence {|p,|} is bounded on every open ball B(&y,r) C U. Hence,
on every B(&y,r’), with 7/ < r, the sequence {p,} is uniformly Lipschitz.
Consequently, the set {¢y, }nen is locally uniformly Lipschitz-continuous in
U (hence locally relatively compact in C'(U, R)).

There is a converse in finite-dimensional spaces:
Lemma 2.18. Let X be finite-dimensional, ¢, and ¢ be continuous convex
functions on X such that ¢, (§) — @(§) for every & € X. If the @, ’s are
uniformly locally bounded above in X, then @, M, ©.

Following Brezis [ in the Hilbert space case (see also Attouch [B]), the
convergence of maximal monotone graphs is defined as follows:

Definition 2.19. Let A,, A C X x X’ be maximal monotone graphs. The
sequence (Ay)p>1 converges to A as mazimal monotone graphs when n — oo
(denoted A,, — A), if for every (£,n) element of A there exists a sequence
(&n, ) in Ay, such that (&,,m,) — (§,n) strongly in X x X’ as n — oo.

12



The convergence of graphs ensures that weak limits of elements of A,
are in A provided the duality product of the pairs is controlled at the limit.
More precisely,

Theorem 2.20. Let A,, A C X x X' be mazimal monotone graphs, and
let (§n,mn) € Ay and (§,m) € X x X', If, as n — +o0,

A, — A, & — & weakly in X, n, —n  weakly in X',
then

(i) if (&, m) € A, then limsup(n,, &) > (0, €);

n—+400
(it) if iminf(n,, &) < (1,€), then (§,1) € A and limnf(n,, &) = (1, ).

It noteworthy that the set of subdifferentials of lower-semicontinuous
proper convex functions is closed for the convergence of maximal monotone
operators:

Proposition 2.21. Let p, be lower semicontinuous proper convex functions
on X. If 0p, — A, then A = ¢ for some proper lower semicontinuous
convez function ¢ on X.

Proof. The proof follows from the fact that maximal and cyclic monotonicity
characterizes subdifferentials and is stable under graph-convergence. O

Let us now state the main result of this section, which concerns the equiv-
alence between Mosco convergence of convex functions and the convergence
of their subdifferentials, and generalizes to Banach spaces the result of [g]
in the Hilbert space setting.

Theorem 2.22. If ¢,, ¢ are proper lower semicontinuous convex functions
on X, the following assertions are equivalent:

(a) on =5 .
(b) @h = .
(c) For every A >0, (on)x M, ©x-
(d) For some \g >0, (©n)x, M, ©g -
(e) For every X\ > 0, there exist ay,by € R" such that
Vn € N, V€ € X, (pn)r(§) +axllgll +bx >0

and for every strongly converging sequence {&, }nen in X, with limit £

(Pn)alén) — ©a(€),
T (Ea) = TYF(€) in X,
(equivalently Opny(&n) — Opa(€)).

13



(f) There exist \g > 0, ay,, by, € RT such that
Vn € N, V€ € X, (pn)r () + ax|I€ll + bxy > 0,

VE € X, (&) — JI?(€) in X (equivalently Opny(§) — Dpx(€))

and there exists one strongly converging sequence (, — ( in X, such
that
(Qpn))\o (Cn) —“n—oo Pl (C)

(g) for every & € X and n € X', there exists sequences (&,)n>1 i X and
(Mn)n>1 n X' such that

& — & limsuppn(8n) < @(€), M —n, limsup ¢y (n) < ¢*(n).

n—oo n—oo

(h) Y(&,m) € Op, there exists (§n,mn) € Opn such that (&,,mn) — (£,1)
strongly in X x X' and on(§) — (§) and ¢}, (1) — ¢ (n).

(i) Opn — Op and there exists (§,m) € 0p, (§nyMn) € Opn such that
(&ns1in) — (§,m), strongly in X x X' and ¢n(&n) — ¢(8).

(j) Opn — Op and there exists o € X and € X' and sequences (ay,) in
X and (B,) € X' such that

oy, — Q, lim sup p, (o) < p(a) < oo,
n—oo

B — B, limsup ¢y, (8n) < ¢*(B) < 0.
n—oo

Proof. The proof goes in a succession of implications.

- @ = 0.
Fix any A > 0 and let £, — £ in X. Set {( = Jf“"(g). By the definition
of Mosco convergence for ¢, there exists a sequence ((;)p>1 in X
such that ¢, — ¢ and lim, o0 n(¢n) = ©(¢). Since (¢n)r(&n) <
on(Cr) + 7”5”55"”2, it follows

. 1€ —¢I” _
limsup(ion)A(€) < () + =52 = eal9), (2.8)

n—oo
which proves (M-]]) in the definition of Mosco convergence for (¢p ).

Assume now that &, — £. Let (£,)x = J2#"(&,) , so

T — 2
(ehr(n) = nl(gn) + 1= Ll (2.9)
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Let ¢ be any vector such that ¢({) < oo and (,, be given by property
(M-i) of the Mosco convergence of ¢, to ¢, i.e. ¢, — ¢ and p,(¢,) —
©(¢). In view of the inequality

_ 2
on((§n)r) + W < ¢n

and the inequality given by Proposition R.16, we deduce that

an - (fn)k”2 < an — CnH2

+al[(§n)all + b

so that the sequence ((&,)x)n>1 is bounded.

Consider a subsequence ((&p, )x)x>1 such that (&,, )y — ¢ and

(O )A((En)n) = liminf, oo (pn)a((€n)a). Going to the limit in (2.9),
using property (M-ii) of the Mosco convergence of ¢, to ¢ and the
weak lower semicontinuity of the norm on X yields

an — (§n)AH2

lim inf(p)(&n) = liminf ((£,)x) + lim inf )

n—oo

A2
> o)+ B o0, @)

which is (M-f{) for the sequence {(¢n)a}-

@) = () is obvious.

B = ®-

The inequality follows from Remark .

The convergence of (¢,)x(&n) to ©x(€) when &, — ¢ follows from (d)
and Lemma P.17, since, as we show now, a local uniform upper bound
exists for the family (¢,,)x. By hypothesis, there exists a sequence (&)
in X which converges strongly to some ¢ and such that (¢,)(&,) —
©(€) in R. Then, by the definition of (¢,,)y it follows that (pn)A(¢) <
©n(&n)+ 3 [[¢—&nl? for every y in X. This inequality yields the desired
local uniform upper bound.

We now prove the convergence of Jf“’"(gn) to Jf“’({). Set ¢, =

Jf*""(gn) Then, (¢n)r(&n) = ©n(Cn) + %an — Call®. As before one
can see that (, is bounded in X. One can extract a weakly con-
vergent subsequence : (,, — (. From (M-ii) for the sequence ¢y,
liminfy_ o ¢n, (Cn,) > @(C), while by weak lower semi-continuity of
the norm, liminfy_ [|&, — Cn,ll = ||€ — ¢||. However, by the pre-
vious convergence, (@n)s(€n) = @n(Cn) + 25 € — Call® converges to
©(€) which is bounded above by ¢(¢) + 5 [€ — ¢[|>. As a conse-

quence, limy_, Pny, (an) = (P(C)a hmkﬂooufn - anH = Hf - CH and
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eA(€) = ©(C) + 5 ]1€ — ¢||?. Therefore, ¢ = Jf‘p(f), and the whole se-
quence (,, converges strongly to ¢ in X, by the local uniform convexity
of the norm.

@) = () is obvious.

() (for some A\g > 0) = (I) for all A > \g.

Just apply the previous () = (f]) to the sequence (¢,)), together
with Proposition P.9.

B = ®.

First note that by integration of the Fréchet derivative Op), starting
at the point xo, () implies the simple convergence (¢,) Ao FO ©xg-

Let (£,m) € Op and ¢ = & + A\gF~'(n). By construction, & = Jff(()

Put & = Jy"(¢) and 1, = Ag 'F(C — &) = O(gn)x,- It is clear that
(Enstn) € Opy,. By hypothesis (B), &, converges strongly to & in X,
and by the bi-continuity of F', so does 7, to n in X’.

Now, since ¢,(£n) = (¢n)r(¢) — W, for n — oo it converges
to @, (C) — % which is just ¢(¢). Finally, by Proposition .11,
@n () = (&nsn) — ¢n(&n) , converging to (€, n) — ¢(§) which is just
" (n)-

(H) = () is obvious .

M= ®.

Indeed if () holds, take a,, = &, B, = 1. Then, by Proposition R.11],
©n(Bn) = (Bn, an) — pn(an) converges to (B, a) — p(a) = ¢*(B).

0= ®.

Start first with (&,7) be in dp. For £ > 1, set (¢!,1n') = (£,71) and let
(€1,m) € Oy for 2 < i < L. By assumption, there exists (&,n%) € Oy,
such that (&,7;,) — (§,7). By (2:6), one has

4
on(&n) < enlan) = D, & = &),
i=1

where 41 = a. As n — oo, one obtains
¢

limsup n (&) < @) =Y (na, & =€),

oo i=1
Since ¢ > 1 and (£%,7%)a<;<¢ are arbitrary, this reads

lim Sup ¢@n (én) < 90(5)

n—0o0
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If £ € D(p) \ D(dyp), we can now use Lemma P.4 to approximate & by
a sequence &/, such that p(&)) — p(£), then use the preceeding result
for each &/, in order to construct the sequence (&,)nen Which satisfies
lim sup,, oo Pn(§n) < 0(€)-

Finally, for £ € X \ D(¢), ¢(§) = 400 and there is nothing to prove.
Since the hypothesis is symmetric under convex conjugation, (g) fol-
lows.

- B = @
It suffices to prove (M-fi) in the definition of Mosco convergence. As-
sume that &, — £ For n € X', let (n,)n>1 in X’ be given by the
assumption (). One has

<777 §> - (P* (77) < 1infgi£f(<77n, §n> - @Z(Wn)) < hnrggf @n(fn)

Taking the supremum over n € X’ allows to conclude by Defini-

tion R.10.
- = @

We know that (H) and (H) are equivalent. Since (f) is invariant under
convex conjugation, it is also equivalent to ().

O

Remark 5. Theorem holds as well when (¢,,)) and @) are replaced by
(pn)rp and @y, respectively for some fixed p in (1, 00).

Remark 6. It would be tempting to consider the statement equivalent to
(), using the condition (M-ii) of (M-i) i.e.: for every sequence (&, )n>1
in X x X’ such that &, — £ € X weakly in X, n, — n € X’ weakly in X’

lim inf @i, (&) = ¢(&),  liminf ey () = ¢" ().

However, this is not equivalent to the Mosco convergence, as can be seen
from the following (counter)example: put

@n(f) = n<ﬁ7§> + n27

with 8 € X'/, 8 # 0. One can check that if &, — & weakly in X and 1, — 7
weakly in X', then

on(&§n) — +oo and @) (n,) — +oo0 as n — 400.

Therefore, for every proper lower semicontinuous convex function ¢, for
every sequence (&, 7 )n>1 in X x X’ such that &, — £ € X weakly in X,
N —n € X' weakly in X'

lim inf ¢, (6n) = @), liminf @7, (ma) = @7 ()

But ¢, M, @ is definitely not true .
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2.4 Link between Mosco and ['-convergences

We first recall the definition of I'-convergence for convex functionals,
which was introduced in [[[§] for general functions.

Definition 2.23. Let ¢, and ¢ be proper lower semicontinuous convex

functions. We say that (¢p,), I-converges to ¢ for the strong topology of
s — T .

X, and we note ¢, — ¢ if

(i) For every £ € X, there exists a sequence (§,),>1 converging strongly
in X to £ such that

lim sup ¢, (&n) < @(&).

n—-4oo

(ii) For any sequence (&,)n>1 of X converging strongly to some & in X,
the following lower-bound inequality holds:

lﬁr_r}igg ©on(&n) = p(£).

The I'-convergence for the weak topology is defined similarly.
Definition 2.24. Let ¢, and ¢ be proper lower semicontinuous convex
functions. We say that (¢,), I'-converges for the weak topology of X to ¢,
and we note ¢y, Wb p if

(i) For every ¢ € X, there exists a sequence (§,),>1 converging weakly in
X to £ such that

lim Sup ¢@n (gn) < @(5)

n—-+o00

(ii) For any sequence (&,)n>1 of X converging weakly to some £ in X, the
following lower-bound inequality holds:

lim inf @, (&n) > @(&).

n—-+o0o

Remark 7. The notion of I'-convergence is well-adapted to study the limit
of variational problems. It is weaker than the Mosco convergence. We refer

to ] and [[1] for more details.

Remark 8. Let ¢, and ¢ be proper lower semicontinuous convex functions.
The following equivalence is straightforward:

M -T - T
(@) oo ¢ = (b)) pn— pand v, — .
Actually, more can be said when considering also the conjugates.

Proposition 2.25. Let ¢, and ¢ be proper lower semicontinuous convex
functions. The following statements are equivalent.
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M
(1) on — .
(2) on "= ¢ and ¢}, "= .
Moreover, either statement implies both ¢, wo b © and ¢}, wo b ©o*.

Proof. Recalling Theorem () and (H) together with Remark f we ob-
tain that (1) implies to (2). The converse follows from the equivalence
between (g) and (H) in Theorem P.23. O

Remark 9. When X is infinite dimensional, if ¢, s} ¢ and ¢ =,
this does not necessarly imply the Mosco convergence, since 1 # ¢* can
oceur.
Indeed, consider
I€ — anll?
en(§) = %7

where ||y, || = 1 and a;,, — 0. One has

on = @ and ¢, =y,

2

. 241
with (&) = 5" and w(n) = 14
The same example also shows that, one can have ¢, wo b w1 and

* - * . 2 2_
e "t # e with oi(€) = 155 and ei(n) = P57 Indeed,
let us consider a sequence (&,) which weakly converges to ¢ in X, then
2
&n — ay — € and by weak lower semicontinuity, lim||&, — oy, || > @ For

the recovery sequence, let us take &, = £ + a,, then ¢,(§,) = @ The

same can be done for the conjugate function.

It is not clear whether ¢, w=F ¢ and ¢} w=k ©* implies the conver-
gence of ¢, to ¢ in the sense of Mosco.

3 The canonical extension of a maximal monotone
graph and the integration of a normal convex
integrand

3.1 Measurability

The study of functionals of the form

) = [ pltult) dp.
requires the understanding of the measurability of families of convex maps

depending on a parameter in a measure space and of the corresponding
families of maximal monotone operators. We will prove that when A(t)
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is the subdifferential of a continuous proper lower semicontinuous convex
function ¢(t, -), the measurability of A is equivalent to the measurability of

In this section, (2,7, p) is a finite or o-finite measure space and the
space X is assumed to be separable. Since X is reflexive, X’ will also be
separable. The set of maximal monotone operators from X to X’ is denoted
by M(X x X') .

We shall consider maps whose values are maximal monotone operators
or convex functions as special cases of multivalued operators. The measur-
ability of such maps is defined according to [f.

Definition 3.1. Let (M,d) be a separable metric space and (2,7) is a
measurable space. The map I' : Q — (M) is measurable if for every open
set U C M, the set

{teQ: Tt)NU #0}

is measurable.

Remark 10. One readily sees that if
{teQ: T(t)Nn B # 0}

is measurable for every Borel set B (resp. for every closed set, open balls
or closed balls), then I' is measurable since any open set can be written
as a countable union of such sets. The completeness of the measure-space
(Q,7, ) implies that these stronger definitions are in fact equivalent (see
[, chapter II1]).

There are several equivalent characterization of measurable multivalued
mappings.

Theorem 3.2 (Castaing and Valadier [[d]). Let (M,d) be a separable
metric space, (Q,7) be a measurable space and T' : Q — ©(M). If for
every t € Q, T'(t) is closed and not empty, then the following properties are
equivalent

(a) T is measurable,
(b) for every x € M, t — d(x,T(t)) = infycpy d(x,y) is measurable,

(c) there exists a countable family of measurable mappings oy, : Q@ — M,
n € N, called measurable sections, such that for every t € €,

T(t) = {on(t) : n € NJ.
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Going back to the measurability of maximal monotone operators, the
map A : Q — M(X x X') is measurable if it is measurable as a multivalued
map from Q to p(X x X').

Similarly, the measurability of convex function-valued maps can be de-
fined in terms of their epigraph, hence the following definition:

Definition 3.3 (Rockafellar [R3], R4]]). Let ¢ : Q x X — RU {400} be
such that o(t, -) is a proper lower semicontinuous function. The function ¢ is
a normal convex integrand if the map ¢ € Q +— epi ¢(t,-) C (X xRU{+o0})
is measurable.

Ezample 3. If ¢ : @ x X — R is Carathéodory and convex, i.e. ¢(t,-) is
a continuous convex function for every ¢ €  and ¢(-,§) is measurable for
every &, then it is a normal convex integrand. Indeed, if (§,),>1 is dense in
X and (gy,) is dense in R™, one can reconstruct the epigraph map from the
countable family of measurable sections

{Sp(taé.n) + Qm}7 n,mec N.

On the other hand, Carathéodory functions can be used to construct
normal integrands, as the following proposition shows.

Proposition 3.4. The supremum of a countable family of Carathéodory
convex functions which is proper is a normal integrand.

Proof. Tt follows directly from Definition B.1] of measurability. O

We are now in position to state the main result of this section.

Theorem 3.5. Let X be a reflexive separable Banach space and let ¢ :
O x X — RU{+oo}. If o(t,-) is a lower semicontinuous proper convex
function for almost every t in ), then the following are equivalent:

(a) ¢ is a normal convex integrand,
(b) ¢* is a normal convex integrand,
(c) for every X >0, @ is a convex Carathéodory function,

(d) there exists some Ao > 0 such that @y, is a convex Carathéodory func-
tion,

(e) for every A > 0 and every £ € X, the map t — Jf(t) (&) is measurable
from Q to X (equivalently t — Op(t)x(§) is measurable from Q to X')
and the map t — (t), (&) is measurable from € to R,

(f) there exists some N\g > 0 such that for every & € X, the map t — J;\po(t) &)
is measurable from Q to X (equivalently t — Op(t)x, (&) is measurable
from Q to X') and there is some & € X such that t — ¢(t), (&) is
measurable from € to R,
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(9) Op(t) : Q@ — M(X x X') is measurable, and there exists measurable
mapping « : Q@ — X and B : Q — X' such that (a(t),B(t)) € Op(t) for
every t € Q, such that the functions t — @(t,a(t)) and t — ©*(t, 5(t))
are measurable,

(h) Op(t) : Q@ — M(X x X') is measurable, and there exists a measurable
function o : Q@ — X such that a(t) € D(p(t)) and t — @(t, a(t)) is
measurable.

Remark 11. Theorem B.§ was proved by Attouch when X is a Hilbert space
m-

Proof of Theorem [3.3.

@ — @)

Let ay : @ — X and 7, : @ — R U {400} be such that
epi (1) = ((om(D), (@) - 1 > 1.

For n € X', ¢*(t,n) = suppen (¥, an(t)) — 7 (t). It is therefore a normal
convex integrand by Proposition B.4. Therefore, (f) implies (H). Exchanging
the roles of ¢ and p*proves the equivalence.

A similarly reasoning shows (H) = (H).

@ = @) and ()= () are obvious.

@) = () and (@) = (). Since ) is Carathéodory and C'! with respect to
¢ € X, it follows that for each £ € X, t — ¢/ (¢, &) is weakly measurable from
Q to X’. Since X is reflexive and separable, it follows that X’ is separable,
so that weak and strong measurability are equivalent.

— (B). Under the hypotheses of ([), since & — ¢y, (&) is C*, it follows
PXo

that for every € € X, t — ¢y, () is measurable.

Let now {&, }nen be a dense sequence in X. For each n, set (a,(t), 5, (t))
= (Jf;p(t) (&n), Opx, (t,€r)), which are measurable.

For a.e. t € Q, and (&,1) € 9p(t), set ¢ = & + MF~1(n) so that
the pair (§,7n) is (Jff(t)(g),ﬁgo)\o(t,f)). For x, — (, Lemma P4 im-
plies the strong convergence of (ap, (t), By, (t)) to (§,m). This shows that
(an(t), Bn(t)) is a countable family which is dense for ¢t — 0J¢(t). Since

o(t,an(t)) = @a (t,&n) — ﬁ”gn — ap(t)|], it follows that t — (¢, ay,(t)) is
measurable. Similarly, ¢*(¢, 5,(t) = (an(t), Bun(t)) — @(t, an(t)) is measur-
able.

(B) = ([) is obvious.

(H) = (H) . By Theorem B.J there exists measurable maps a;, :  — X
and (3, : @ — X' such that d¢(t) = {(an(t), Bn(t)) : n > 1}. By (B.6),
4

plan(t)(t) = ot alt)) - Sup{ZW,S”I —&) > 1,( ") € Dy,

i=1

e = an(t),m = Bn(t) and el = a(t)}.
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This function is measurable since

4

sup{Z(ni,ﬁi“ &) >1,(8 ') € Dy,

i=1

€' = an(t),m = Ba(t) and €1 = a(t)}

= sup{

M~

<ﬂ”k (t)’a"kﬂ (t) - ank+1> L >1n, > 1,
i=1

n1=n and ay,,,, = a(t)}.
By Lemma .4 (and some diagonal procedure), for every £ € D(yp), there

exists a sequence (ng)r>1 such that oy, (t) — & and ¢(t, o, (t) — ©(t,§).
Therefore

epi ((8)) = [(an(), ot an(®) T 0) - 0 > 1,g € Qs

and @ is a normal convex integrand. O

3.2 Integrating normal convex integrands

For a normal convex integrand ¢ : @ x X — RU{+o0} and u € LP(Q, X),
how can one define

ow) = [ pltu(t) dy?

The integral does not necessarily make sense. However, if there exists 0 €

L4(Q, X") such that o*(t, 3(t)) € L'(Q, i), then by Proposition

et u(t)) = (B(1), u(d)) — " (¢, 6(1))-

Since the latter is integrable, [, (¢, u(t)) du is well-defined and convex
in R U 4o00. By a judicious application of Fatou’s lemma, it is also lower
semicontinuous.

The following theorem of Rockafellar makes the connection with conju-
gation in the case of LP-spaces.
Theorem 3.6 (Rockafellar [R4]). Let ¢ be a normal convex integrand. If
there exists a € LP(2, X) such that o(t,a(t)) € LY(Q) and 8 € LI(Q, X)
such that ©*(t, B(t)) € L}(Q), then I, and I+ are proper lower semicontin-
uous convex functions and (I,)* = I,=. d

Given a map A : @ — M(X x X’), it has a canonical extension from
LP(Q; X)) to L1(Q; X'), which is itself monotone.

Definition 3.7. The canonical extension of A : @ — M(X x X'), from
LP(Q; X) to LI(Q; X') (where 1/p+1/q = 1), is

A= {(u,v) € LP(Q; X) x LYQ; X') : (u(t),v(t)) € A(t) a.c. t € Q}.
(3.1)
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It is known (see [[[4]) that the operator A is maximal if and only if it is
not empty.

In the particular case where ¢ : Q@ x X — RU{+400} is a normal convex
integrand, the canonical extension Ay, of dyp is

Age={(u,v) € LP(% X) x LY X") : (u(t),v(t)) € Op(t) ae. t € Q}( |
3.2

A natural question arises: are d(I,) and Ay, somehow connected?

Theorem 3.8. Under the assumptions of Theorem [3.4,
0(1,) = Apy.
In particular Ap, is mazimal monotone.

Proof. Let (u,v) be in dI,. By Theorem B.§ and Proposition P.11),

[ @) + 9 (6 0(e) d = Lo(w) + (1) (0) = [ (ot u(e) d. (33)
Q Q
But, by Young’s inequality, for every t € 2:
ot u(t)) +@"(t,0(t) = (v(t), ult))-
Therefore,
o(t,u(t)) + ¢*(t,v(t)) — (v(t),u(t)) = 0, for almost every t € Q,

so that (u,v) € Ag,.

Thus, d(I,) C As,. Since I, is lower semi-continuous, convex and
proper, d(I,) is maximal monotone by Proposition R.13, and As,,, which is
monotone, must equal 9(I,). O

Corollary 3.9. Under the assumptions of Theorem [3.§, with the natu-
ral norms on the spaces LP(Q; X) and LI(Q; X'), the resolvant Jf;“’ is
the canonical extension of the resolvant t — Jfﬁ(t), and the Yosida ap-
proximation A(BLP) NS the canonical extension of the Yosida approzimation
t—= Apyty - Purthermore, (Ip)xp = Iy, ,-
Proof. If w is in LP(Q; X), (u,v) = (ijf (w), Aar,), (w)) exactly means
(u,v) € Aar,) and w = u + AFEPI(Q;X)(U)-

But this implies that for a.e. ¢ € Q wu(t) + AF5 (v(t)) and (u(t),v(t)) €
Aare(t)), hence the result.
Now,
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(I p(w) = I(u) + guw -
= [ (ettu(®) + Zuto) — u) s dn
Q D
= / o p(t,w(t)) du. O
Q

In the previous proof, it is part of the hypothesis that « is in LP(2; X)
and v in L9(Q; X'"). However, under the hypothesis that ¢(t,-) is a normal
convex integrand, from Theorem B.J it follows that for every measurable
w(t) defined on € with values in X, the functions ¢t — u(t) = Jf;’;(t) (w(t))
and ¢ — v(t) = A, (), (w(t)) are measurable. Under the extra hypothesis
of Theorem B.6, if w belongs to LP(£2; X), then so does u while v belongs to
L9(Q; X'):

Proposition 3.10. Under the assumptions of Theorem |3.4, if w belongs to
LP(Q; X)), thent — Jff)(t) (w(t)) is in the same space, and t — Ay, (w(t))
is in LI(Q2; X').

Proof. From the properties of the duality mapping, the two conclusions are
equivalent. We show the first one. Young’s inequality implies

w(t,m) - <1‘,ﬁ(t)> + (p*(t,ﬁ(t)) >0,

S0
p(t, ) + =[x [18)|lx + " (¢ 5(t) = 0. (3-4)
Applying this to u(t) = f;“’ (w(t)) together with
1
Pap(tw(t) = ot u(t) + 5= lw) - u(®) %
1
< (t,a(t)) + W”w(t) — o)k
yields

#uw@) —u®)lf < ot alt) + zﬁnw(w —a®)|%

+v@lx 8@ x + " 5())

It follows that there exists some constant Cj, y (which only depends on
A and p) such that for a.e. t € Q,

lu@®l% < Cor(llw@l + lla®)lI+
1B + @t at)) + " (£, B(2))) . (3.5)
This implies that v belongs to LP(2; X). O
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3.3 Convergence of canonical extensions and Mosco conver-
gence of sequence of normal convex integrands

Given functions A, 4, : Q — M(X x X') and their canonical extensions
A, A" the question whether the pointwise convergence A, (t) — A(t) im-
plies the convergence of the induced graphs A" — A was considered in [14]
with the following result:

Theorem 3.11. Let A, A, : Q — M(X x X') be measurable. Assume
(i) for almost everyt € Q, A,(t) — A(t) as n — oo,
(i) A and A™ are mazimal monotone,
(ii1) there exists (aun, Bn) € A™ and («, 3) € LP(Q; X) x L1(Q; X') such that
(an, Bn) — (a, B) strongly in LP(; X) x L1(2; X') as n — oo,
then A" — A.

Recalling the results of section 2, we see that in terms of normal convex
integrands, the question becomes: given ¢ , ¢, and their associated graphs

Aodg, Ay, , does the Mosco convergence ¢y, (t, .) M, ©(t,.) imply the Mosco
convergence of the induced functionals I, M, I, and convergence of the
induced graphs Ap,, Agy, ?

Theorem 3.12. Let ¢, ¢, : Q x X — R U {+o0} be normal conver

integrands such that for every t € Q, p,(t,.) M, ©(t,.) as n — oo. Let
an and o in LP(Q), B and B in LI(Y) be such that o, (t, an(t)) € LY(Q),
@ (t, Bn(t) € L1(Q), @t a(t)) € LY(Q) and o*(t, B(t)) € LN (Q). If

an — a in LP(Q,X), limsup Iy, (o) < Ip(a),
n—oo
Bn— B in LU(Q,X'), limsup I (B) < I+(5),
n—oo
then "
Iy, — I,.

In particular, Ap,, — Agy-

Lemma 3.13. Under the hypotheses of Theorem [3.13, t — ¢n(t, an(t))
converges to ¢(t,a(t)) a.e. in Q and I, (o) actually converges to I, ().
The similar statement holds true for ¢ (t, Bn(t)).

Furthermore, the sequence of functions t — (@n(t, an(t)) + @5 (¢, Bn(t)))
converges to its limit a.e. (p(t,a(t)) + ¢*(t, B(t))) in L}(Q).

Proof. Tt is based on a precise application of Fatou’s lemma (in its most
general version which applies to a sequence bounded below by a convergent
sequence in L'(€2)). Up to a subsequence (still denoted by {n}), for almost
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every t € Q, a,,(t) — «a(t) in X and §,(t) — B(t) in X', so, by definition of
the Mosco convergence, for a.e. t € €.

tim inf (g (t,an () + 24 (1 5u(1)) > 0t a(0) + (L A1) (3.6)

Noting that @, (¢, o (t))+ ¢k (t, Bn(t)) > (an(t), Bn(t)), where (o, Bn) —
(o, ) in L'(Q), one can apply Fatou’s Lemma in order to obtain for any
measurable subset E in €:

lim inf / onlt an(t)) + G4t Bu(t)) dpt > / o(t,0(t)) + " (t, B(E)) dp.
FE FE

n—oo

This is true in particular for £ = ). However, the opposite inequality is
satisfied on €2 as a consequence of the last hypothesis of Theorem B.1%:

timsup [ ot an(t)) + ¢h(00,(0) dp < limsup I, (@) + limsup L (3,
Q

n—oo n—oo n—oo

< [ olt.a(o) + 4" (000) di = L,(0) + 1-(9)
Q

Consequently, lim,, .o 1, (0) = I, (a) and lim, oo Lox (Bn) = Lo+ (5).
From these equalities together with (B.f) and Fatou’s lemma again, it
follows that

lim (on(t, o (t)) + @ (t, Bu(t))) = @(t, a(t)) + " (¢, 5(1))

n—oo

for a.e. t in 2. Comparing with the opposite inequalities due to the Mosco
convergences ¢,(t,.) M, o(t,.) and @ (t,.) M, ©*(t,.), one actually con-
cludes that

lim (1, an(t)) =p(t,a(t))  and — Tim @y (L, 5a (1)) =¢" (8, 5(8)) (3.7)

n—0o0

for a.e. t in 2. Now, consider the nonnegative function

On(t) = @n(t, an(t)) + @t Bu(t)) = (an(t), Bu(t)-

Clearly, when n — oo, it converges a.e. to

0(t) = ¢(t, a(t)) + ¢ (t, B(t) — (a(t), B(¢))

and its integral, which is also its norm in L!(Q) converges to that of 6.
Applying Fatou’s lemma to the positive sequence 6,, + 6 — |0,, — 6| gives

liminf/(é?n—i—e—wn—é?\) du=2 Hdu—limsup/ |6, — 0| duZ/%’d,u,
) Q Q Q

n—0o0 n—oo

which implies that 6,, converges to @ in L' (£2). Since {(a,(t), B, (t)) converges
in the same space to (a,3), this implies that ¢, (¢, (t)) + @5 (¢, Bn(t))
converges to ¢(t,a(t)) + ¢*(t, B(t)) also in L(). O
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Proof of Theorem [3.13. We claim that ([[) of Theorem is satisfied for
any pu > 0, e.g. u = 1. First, for £ € X, inequality (B.4) gives here:

on(t, ) + 1€ llx[18n () x + @n(t, Bu(t)) = 0.
By Remark [, it follows that

%uﬁéﬂwwMMNWx+%de&ﬂwﬂu%ﬁ»z& (3.8

Replacing & by u(t) for arbitrary w € LP(; X) and integrating over € gives
the two constants

1 *
an = ”ﬁHLQ(Q;X/) and b, = Z‘)Hﬁn”qm(g;x/) +/Q<P (t, Bu(t)) dp.

From the hypotheses, both sequences a,, and b,, are bounded, hence the two
constants a = sup,cn @, and b = sup,cn by, are finite and satisfy the first
condition of (f).

For u € LP(Q; X), and let v, = in;”" (u). Corollary B.9 implies that

v (t) = ij;”(t) (u(t)) for a.e. t. By () of Theorem applied for almost

every t € ), it follows that v, (t) converges to v(t) = Jfﬁ(t) (u(t)) for a.e. t.

But inequality (B.§) applies here to give

lon 1% < Con(lu@®li + llan®)I%
18 ON% + @n(t, on(®))) + @t Ba(t)) . (3.9)
From the hypotheses of the theorem together with the last statement of
Lemma B.13, it follows that the right-hand side of (B.9) converges strongly

in L'(Q). Consequently, by dominated convergence, v, converges strongly
to v in LP(Q; X). This is the second condition of (}) in Theorem

Finally, the third condition of (f}) is satisfied by the sequence {a,} itself.
Indeed, by (f) of Theorem applied for almost every ¢ € €, it follows
that wy,(t) = (¢n)1,p(t, an(t)) converges to w(t) = p(t,a(t)) for ae. t €
Q. Now applying Fatou’s lemma to the sequence of non-negative functions
gDn(t, an(t)) - wn(t) gives

lim inf/(gpn(t, an(t)) —wy(t)) dp = I, () — lim sup/ wy(t) dp
Q Q

n—00 n—o00

zéwmmm—wwwm

from which it follows that limsup [, w,(t) dp < [ow(t) dp. A similar
computation using the inequality (B.§) applied for & = Jff)”(t)(an(t)) gives

liminf/ wy(t) dp > / w(t) du.
Q Q

n—0o0

In conclusion, [, wy,(t) du converges to [ow(t) du, i.e. lim,_.o Iy, (on) =
I (). O
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Remark 12. The previous Theorem applies to the case where ¢, (t) M, o(t)
for t € Q and there exists m,, € L(Q) and a > 1 such that m,, — m € L*(Q)
and

g il
« D mn(t) < (Pn(taf) < mn(t) +a D .

Indeed one has then

q q
a—1H77” —mn(t) < @n(tan) < mn(t) +aH77” )

q

and it is thus clear that o, (¢, a,(t)), ©(t, a(t)), ¢k (t, B (t)) and ¢*(t, B(t))
are all summable. By Lemma R.17, one also has ¢,(t,0) — ¢(t,0) and
5 (t,0) — ¢*(¢,0). By dominated convergence, both convergences I, (0) —
1,(0) and Ix (0) — I,+(0) follow. Therefore Theorem B.13 applies.

4 Periodic unfolding

The periodic unfolding operator was introduced by Cioranescu, Damla-
mian and Griso [[[J]. We recall the definitions and properties of this operator.

The proofs can be found in [0, [3, q].
In RV, let Y be a reference cell (e.g. ]0,1[", or more generally a set

having the paving property with respect to a basis (by,...,by) defining
the periods). For y € RY, [y]y denotes the unique integer combination
Z;V:l k;bj, with k; € Z, of the periods such that y — [y]y belongs to Y and
define

{yby =y —[yly €Y.

Definition 4.1. Let Y be a reference cell, ¢ a positive number, S a set and
amap u : RY — S. The unfolding operator T is defined by

TY(w) : RV xRN = §
(2.y) = T (W)(2,y) = u(e[ ] +ey).
One readily sees that for every z € RV,
Y (u)(a, {2/e}) = u(@).
Moreover, 7Y (u) is invariant under the following action of ZV: for k € Z",
T (u)(x + ek,y — k) = T (u)(z,y).
Ifu:RN — Sand f: S — S, then

T (fou) = foTX (u).
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In particular if u : RN — S and v : RN — T, the preceding property applied
to the projections P : (u,v) — u and Q : (u,v) — v yields

7 ((u,0)) = (T (u), TN (v)).
Therefore, if F': S xT — R,
Y (F(u,v)) = F(TY (), T (v). (4.1)

Useful particular cases are when S = R, T'= R and F : (s,t) — st and
when S = RN, T'= R and F is the dot product.

Proposition 4.2. If u € LY(RY), then T.Y (u) € L*(R™ x Y) and

1
|u) do= g [ T )ay) do dy.
RN Y] Jrvxy
In particular, if 1 <p < +oo and u € LP(RY), then TY (u) € LP(RN xY),
and
1T (W)l ooy vy = 1Y TP (|ull o (v

Remark 13. In the sequel, a function which is defined on a set A of RY,
can be viewed as a function defined on RY, if we consider its extension by
0 outside of A.

The characteristic function associated to the set A, is denoted by x 4.
The combination of Proposition f.3 together with ([.1]) yields:

Proposition 4.3. Let A C RN be measurable. If u belongs to L'(A), then
TY (xa)TY (u) is well-defined on RN x RN, T (x4)TY (v) € LY (RN xY),
and
[uleydo= g [ T )T () do ay.
A Y] Jrv sy
Moreover, if 1 < p < +oo andu € LP(A), then T. (xa)T.Y (u) is well-defined
on RY x RN, 7Y (xa)TY (u) € LP(RYN x Y) and

17 () T2 (W)l o vy = Y[V lull o).

Since the unfolding operator has a local action, it is natural to examine
its effect on locally summable functions.

Proposition 4.4. For every 1 < p < oo, T¥ is a linear and continuous
operator from LT (RN) to LT (RN x RV).

loc loc

We turn now to the L?

loc convergence properties for 1 < p < +o0.

Theorem 4.5. Let (uc):,u in L
in LP (RN) then

loc

(RM), 1 < p < +oo. If u. — u strongly
TY (u) »u®1 strongly in LY (RN x RY) as e — 0.

loc
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Global convergences follow easily.

Theorem 4.6. Let A C RY be measurable (u:)e,u in LP(RY), 1 < p <
+o00. If uz — u strongly in LP(RN), then

TY (xA)TX (ue) — (xau) ® 1 strongly in LP(RY xY) as e — 0,
and
’Z;Y(ug)‘AXy —u® 1 strongly in LP(AXY) ase — 0.

The following result states that the limit (if it exists) of an unfolded
sequence is periodic.

Lemma 4.7. Let u. € L] (RY) (resp LI (R™)) and 4 € L (RN x RY)
(resp LY (RN)). If

loc

T (ue) — 4 +—weakly in M(RN x RN, (resp weakly in LF (RN)).

loc
where M(RYN xRY) denotes the Radon measure space, then 1 is Y -periodic.

Next, we recall the properties of the unfolding operator applied on the
gradient of some functions. If u € VVI})’({)(RN ) then by Proposition §.4,

TV (u) € LT (RN x RY) and T (Vu) € L (RY x RY). Moreover, for
every test function ¢ € D(RY x RY)
Lo Ve dedy= [ Vyplw) uela/dy +ey) dody
RN xRN RN xRN

= —/ o(x,y) eVu(e[z/ely +ey) do dy
RN xRN
=- / ¢ €T (Vu) da dy,
RNV xRN
Therefore 7Y (u) is weakly differentiable with respect to y, and
=T (V) = V(T (). (1.2)

The following result gives a relation between the limit of an unfolded
sequence and the limit of the sequence:

Proposition 4.8. Let (u.). be a sequence of L, (R™) and letu € LV (RY),

loc
ae LY (RNVxRYN). Assume that u. — u weakly in LY (RN) and T u. — 4

weakly in LY (RN x RY), then

1
u(z) = —/ a(z,y) dy.
Y1 Jy
The following proposition is an important tool for the sequel.
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Proposition 4.9. Let (u:). be a sequence in T/VI})’f(RN) and suppose that
@ belongs to LY (RN;RN). If (u.). is bounded in LY (RY), (eVu.). is
bounded in (LY (RN)N and

loc

7Y (ue) — @ weakly in LY (RY x RN) as e — 0,
then

€T (Vue) = Vyi weakly in L (RN x RY) ase — 0.
Moreover 4 is Y -periodic in y.
The following theorem is the main result.

Theorem 4.10. Let (uc): be a sequence which converges weakly to some u in
I/Vli’p(RN). Then, there exists a subsequence (not relabeled) and a function

@ in LV (RV; I/Vl})’f(RN)) such that the following convergence holds:
T (Vue) = Vu® 1+ Vi, (4.3)

loc
weakly in L{’OC(RN x RN) as e — 0. Additionally, 0 is Y -periodic.

5 Homogenization results

In this section we state the homogenization result, see [26] and [R3]. We
consider a problem of the form

(Vu,d) € 0p(z) in Q,

divd=—f inQ, (5.1)
u=0 on 0f),
where we assume
P P
oL i) < gt <@l ey, (52)

The variational formulation of (f.]), for given f € W=19(Q), is
Find u € Wol’p(Q), and d € LY(Q)" such that
d(z) € 0p(z,Vu(z)) a.e. in Q,

| d@9s(o) do = (1.6), vE € W (@),

(5.3)

This problem has at least one solution (u,d) € Wol’p(Q) x LI(Q;RN).
This is a consequence of more general results concerning the generalization
to maximal monotone operators of the result of Leray and Lions [I§] ([L7]
or [§]), or from classical results of minimization of convex functionals to-
gether with the following characterization that is essentially a consequence

of Proposition R.13.
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Lemma 5.1. Let ¢ be a lower semicontinuous function such that (5.9)
holds. for a > 1 and m € L*(Q). Then, for f € W=14(Q), both

inf{/ﬂcp(x,Vu(x)) dz — (f,u) : u € Wol’p(Q)}
and
inf{/ﬂgp*(m,d(m)) dz: divd = —f}

are reached at (u,d) € Wol’p(Q) x LI(Q) if and only if (u,d) solves (B.]).
Therefore (Vu, f) € 0I,.

Proof. Define
o: LP(;RY) - R
e / (ol e(@)) — (dla). e(a))) da
Q

and
V ={Vu:uecWh(Q)}

By Proposition B.g, one has

d*: LI RY) - R

h— / o(x, h(x) —d(z)) dz.
Q
and
Vit ={heL{Q,RY): divh=0}.

Applying Proposition .13, one obtains

[ ot Fute) o= (o) = [ (ote Vale)) — (o), Vua)) @z

Q
= inf & = — inf ®*(h
inf ®(e) = — inf &7(h)

— [ ¢ (wda) da.
Q
By Proposition R.11], (Vu(z),d(x)) € dp(z) for almost every z € Q.
For the converse implication, note that by definition of subdifferentiabil-
ity, for every v € VVO1 P(Q)
/Qap(x,Vv(m)) dz — (f,v) = /ng(x,Vv(x)) — (d(z), Vu(x)) dx
> [ oo, Vu(o) - (dla), Vu(z) da
Q
= [ ¢l Vu(a) da = (1.0
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Similarly, for every h € LI(Q; RY), with div h = —f,

/wwahm»dmz/Qf@A@»—amw—d@wimwm
Q

Q
- [ ¢ (@d@) do
Q
since div (h — d) = 0. O
Definition 5.2. Define
WP RY) - R
w W) = I,(Va) = [ ol Vu(a) da,

Q

and
U P(Q;RY) = R
U(u) if u e WHP(Q;RY),
u +—
+oo if u € LP(Q; RN)\ WhP(Q; RY).

Corollary 5.3. Let f € W= 14(Q;RN) and u € Wy P (Q;RN), then (u, f) €
OV iff there exists d € LI(; RY) such that (u,d) solves (B.1)).

Let f e LYQRY) and u € WyP(Q;RN), then (u, f) € OV iff there
exists d € LI(Q; RY) such that (u,d) solves (5.1]).

In both cases, W*(f) = I(d) (resp. W*(f) = I,+(d)) (I,~(d) is unique
even if d is not).
Theorem 5.4. Let 1 < p < oo, p ' +q¢t =1 m. € LY (Q), a € (0,1],
QC RN and let p. : Q x RN — R. Assume that o(x,-) is convex for every

€ Q, o(-,€) is measurable for every & € RN and for almost every x € Q
and for every &€ € RV,

a@ —me(z) < @(x,8) < me(x) + al@. (5.4)

Suppose that there exists a cellY € RN and a function ¢ : QxY xRN — R
and m € LY(Q x Y) such that for almost every (z,y) € A x Y,

T oe(w,y,.) = o(z,y,.), (5.5)

and T.(m.) — m strongly in L'(QA xY) as e — 0.
Finally, assume that f- — fo strongly in W=59(Q) as e — 0.
Consider a (not necessarily unique) solution (ue,de) € Wol’p(Q) x L1(Q2,R™)
of the problem
(Vug,d:) € 0p:(x) in Q,
—div d, = f. in Q, (5.6)
us =0 on O0f).

34



Then, the family (ue,d:)e>0 is weakly compact in Wol’p(Q) x LI(Q;RN).
Moreover, if ug is any of its weak limit points, i.e. if there is (€y)n>1 such
that €, — 0

U, — U weakly in Wol’p(Q),
d., — dy weakly in L9(Q; RY),
then
(Vuo,do) € dpo(x) in Q,
—div do = fo m Q, (5.7)
ug =0 on 051,

where, for almost every x € ), the function @q is given by
. 1 . N
colo.€) = int{ = [ @+ Vi) dy: ae WM} 5

The function ¢q is lower semicontinuous convex in the second argument and

satisfies (@), with
i = —1 m(x
m(x) = | | / ( ,y) dy.

And as n — +oo,

U, (u.) = /Q oo (2, Ve, (z)) dz — /Q 2oz, Vo () dz = Uo(ug),
(5.9)

U (f) = /Q o (&, de, (2)) i — /Q g do () da = Wi (fo). (5.10)

Remark 14. Theorem p.4 applies to the particular case where ¢.(z) = ®(Z)
and mc(z) = M(Z) where p(z,y,-) = ®(y,-) and m(x,y) = M(y). In the
most general situation, given any ¢(x,y) satisfying the corresponding con-

dition (f.4), one can construct a sequence . (z, ) to obtain 7.Y ¢ (z,y,.) —

e(@,y,.) (L)
Proof of Theorem [5.4. First note that by (5.4), for every n € RV,

q p
o ) < i) < i) + ol
By Proposition P.11],
1 Vulld llde||E .
i 1<u qauu H Zﬂq) < /Q e, Viie(2)) + ¢ (3 de()) Az = (fo,uc).

Since p > 1, the sequences (u.)e>0 and (d: )0 are thus bounded in W1(Q)
and L?(Q2). Hence they are weakly compact.
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Assume now that u., — up weakly in VVO1 P(Q) and d., — dy weakly in
LY(RN;RY). By Theorem [L.10, there is & € LP(Q; W (Q)) such that, still
up to subsequences

7Y (Vue,) = Viug + Vi weakly in LP(RY x V;RY). (5.11)

Moreover, the sequence (7. (de,))n>1 is bounded in LI(RM x Y); hence

En

there exists 7 € LY(R"N x Y), so that up to a subsequence, 7. (d.,) — .
Letting d = n — ‘71| Jy n(y) dy, one has

7Y (de,,) — do + d weakly in LI(RY x Y).

Let v € C°(€2). By the weak convergence of (d, )n,>1 and the strong
convergence of (f-, )n>1, letting n — oo in (f.4) yields

/(do(x),Vv(x)> dz = / fov dz, (5.12)
Q Q
N —div dy = fo in D'(Q). (5.13)

Next, let v € D(Q) and w € C°(RY), such that w is Y-periodic. Defining
ve, (2) = epv(z)w(x /ey, ), one has, by (b.6) and Proposition [i.3,

1

¥ (T (de), T (Vo,)) do dy = / fove, da.
RN xY Q

Letting €, — 0, one has v., — 0 weakly in W'?(Q) and 7} (Vv.,) —
v(z)Vyw(y) strongly in LP(€; Wa2(Y)), so that

1

[ o) + de,y), v(@) Vyw(y)) de dy = 0.
‘Y‘ QxY

Since v is arbitrary, one concludes that for almost every x € 2, for every
w e Wpk(Y),

,71, /Y (), Vyu(y)) dy =0, (5.14)

ie. —div d(z,-) = 0 in (C2,) (V).

By the Mosco convergence one obtains
[ el Vuata) + Ve, ) + ¢ (o dola) + ) da
XY

n—0o0

<tmint [T g (09T, e, (0) + T2, 62, (00T do(0) da
QxY

= liminf(f. ,uc,).
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By assumption, one has

(fe,ue) — (fo,u0) = /Q<do(x),Vuo(x)> dx.

By Proposition R.11], one concludes that
[ el Voo + Vyie.) + o dol) + da.g)
XY

N / (do(x), Vug(x)) dz,
Q

therefore, in view of Lemma p.5 below, (ug(z),do(z)) € dpo(x). Finally, one
has that

lim inf/ Tz, e, (2, VT, uc, (x)) de dy
Qxy

— / (@, Vuo(z) + Vyi(z, y)) dz dy,
QOxY

and

lim inf/ 1., p: (2, VT, ue, (x)) do dy
Qxy

=/ ¢ (z,do(2) + d(z,y)) dz dy.
aOxyY

Since, by Lemma p.1], the right-hand sides are independent of the solution
of problem B.7 and since the reasoning can be made for every subsequence,
one has the required convergences of the integrals. O

Remark 15. The previous proof easily extends to different boundary condi-
tions for which a variational formulation holds. It can be extended to the
reiterated case as in [R(].

The properties of the homogenized function are given now.

Lemma 5.5. If o : Y x RY — R satisfies

al@ —m(y) < ¢(y,€) < O‘MpHP +m(y), (5.15)

then ¢ : RV — R defined by

0(©) = it{ 7 [ el + Vi) dy s e Wiz}

satisfies ([5.13) with
: /
m(r) = — [ m(z,y)dy,
@) = 57 [ i)
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and
* . 1 * 7 7 q
w<m:nﬁ{—— p (n+d(y)) dy: de LI(Y),
Y1 Jy
1 [ o
|—ﬂ/dolyzoanddwd:o}(5.16)
Y
Proof. First note that

(y,€) dy < /m dy + a—
\ﬂ/ﬁ V]|

By Jensen’s inequality, one also has

04_1@ —m< /Y(a—l |’§+Vﬁ(y)”g _m(y)) dy < / a—l dy,

p Y

Mb

so that v
_1 €y

p

and 1) satisfies the required coercivity and growth conditions.
Consider now the convex functional

—m < P(€)

q)ng(Y)HR

1
=Ny oy, +ely)) dy

and the vector space

V ={Vi: aecWP()}.

One has
D(d) = |—;| /Y o d(y)) — (d(y),€) dy

and

R 1 A A
i:{deL%YyW?L/ddyzoamj&vdzo}
Y

Applying Proposition R.13, one obtains (5.16). Reiterating a similar argu-
ment, one finally obtains ¥** = 1, so that v is lower semicontinuous and
convex. U

Corollary 5.6. Under assumptions of Theorem [5.4, one has the following
Mosco convergence:
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Proof. We show that () of Theorem is satisfied. The lower bound is
easily obtained from (p.4) and Remark p.4.

‘Let now w be given in LP(£2). By Corollary .3, the value of the resolvant
Jalllg

1p° (w) = uc is the solution of the following variational problem (see B-3)):

Find u. € W, ?(Q), and d. € LI(Q)" such that
d-(z) € Ope(z, Vus(z)) a.e.in Q,

/Q d.(z) - VE(x) do = (ve, E)VE € WiP(),

where v. = Fj(w — ue) = |w — uc P72 (w — ug).

(5.17)

It is then easy to check that u. is bounded in VVO1 P(2), and that d. is bounded
in L9(Q)N. Consider a sequence {¢,,} such that u., converge weakly to some
up € VVO1 P(Q) and d., converges weakly to some dy in L(Q)". By compact
embedding, u., converges strongly to ug in LP(2), so that v, converges
strongly to vg = Fp(u — ug). By Theorem p.4, it follows that ug is the
solution of

Find ug € Wol’p(Q), and dy € L1(Q)" such that

do(z) € Opo(x, Vup(x)) a.e. in Q,

/Q do() - VE(x) dz = (v, E)VE € WEP(Q),

where vg = F,(w — ug) = [w — ug|P~*(w — up).

(5.18)

This just means that ug is ch’) g“ (w), is therefore unique and is the strong limit

of the whole sequence Jﬁ EE (w) in LP(2). This proves the second condition

of () of Theorem P.23. . .

Theorem @ also implies that W.(uc) converges to Wo(up) . On the
?ther hand, (¥e)1p(w) = We(ue) + %Hw — zfgﬂip(ﬂ) so that it converges to
Uo(ug) + %Hw - u0||1£p(m, which is exactly (Wg)q p(w). This satisfies the last
condition of (f) of Theorem P.23. O

The same argument, making use of the uniform coerciveness of the ¥,
on W'P(Q) due to condition (5.4), shows the following convergence:

Corollary 5.7. The following weak T' convergence holds in W1P(Q):

v, =g, O
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