Hierarchical Penalization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Hierarchical Penalization

Résumé

Hierarchical penalization is a generic framework for incorporating prior information in the fitting of statistical models, when the explicative variables are organized in a hierarchical structure. The penalizer is a convex functional that performs soft selection at the group level, and shrinks variables within each group. This favors solutions with few leading terms in the final combination. The framework, originally derived for taking prior knowledge into account, is shown to be useful in linear regression, when several parameters are used to model the influence of one feature, or in kernel regression, for learning multiple kernels.
Fichier principal
Vignette du fichier
NIPS2007_0613.pdf (278.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00267338 , version 1 (27-03-2008)

Identifiants

  • HAL Id : hal-00267338 , version 1

Citer

Marie Szafranski, Yves Grandvalet, Pierre Morizet-Mahoudeaux. Hierarchical Penalization. Neural Information Processing Systems (NIPS), 2007, Canada. pp.1457--1464. ⟨hal-00267338⟩
124 Consultations
86 Téléchargements

Partager

More