Homogenization of semi-linear PDEs with discontinuous effective coefficients - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2009

Homogenization of semi-linear PDEs with discontinuous effective coefficients

Résumé

We study the asymptotic behavior of solution of semi-linear PDEs. Neither periodicity nor ergodicity will be assumed. In return, we assume that the coefficients admit a limit in \`{C}esaro sense. In such a case, the averaged coefficients could be discontinuous. We use probabilistic approach based on weak convergence for the associated backward stochastic differential equation in the S-topology to derive the averaged PDE. However, since the averaged coefficients are discontinuous, the classical viscosity solution is not defined for the averaged PDE. We then use the notion of "$L^p-$viscosity solution" introduced in \cite{CCKS}. We use BSDEs techniques to establish the existence of $L^p-$viscosity solution for the averaged PDE. We establish weak continuity for the flow of the limit diffusion process and related the PDE limit to the backward stochastic differential equation via the representation of $L^p$-viscosity solution.
Fichier principal
Vignette du fichier
Bahlali-Elouaflin-Pardoux-29-06.pdf (244.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00266406 , version 1 (23-03-2008)
hal-00266406 , version 2 (08-07-2008)

Identifiants

Citer

Khaled Bahlali, Abouo Elouaflin, E. Pardoux. Homogenization of semi-linear PDEs with discontinuous effective coefficients. Electronic Journal of Probability, 2009, 14, pp.477-499. ⟨hal-00266406v2⟩
174 Consultations
158 Téléchargements

Altmetric

Partager

More