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Abstract

We study the asymptotic behavior of solution of semi-linear PDEs. Neither period-
icity nor ergodicity will be assumed. In return, we assume that the coefficients admit a
limit in C̀esaro sense. In such a case, the averaged coefficients could be discontinuous.
We use probabilistic approach based on weak convergence for the associated backward
stochastic differential equation in the S-topology to derive the averaged PDE. How-
ever, since the averaged coefficients are discontinuous, the classical viscosity solution is
not defined for the averaged PDE. We then use the notion of ”Lp−viscosity solution”
introduced in [6]. We use BSDEs techniques to establish the existence of L

p−viscosity
solution for the averaged PDE. We establish weak continuity for the flow of the limit
diffusion process and related the PDE limit to the backward stochastic differential
equation via the representation of L

p-viscosity solution.

Keys words: Backward stochastic differential equations (BSDEs), Lp-viscosity solution for
PDEs, homogenization, S-topology, limit in C̀esaro sense.
MSC 2000 subject classifications, 60H20, 60H30, 35K60.

1 Introduction

Homogenization of a partial differential equation (PDE) is the process of replacing rapidly
varying coefficients by new ones such that the solutions are close. Example: Let a be a
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one dimensional periodic function which is uniformly elliptic. For ε > 0, we consider the
operator

Lε = div(a(
x

ε
)∇)

For small ε, Lε can be replaced by
L = div(a∇)

where a is the averaged (or limit or effective) coefficient associated to a. As ε→ 0, solutions
of parabolic equations

∂tu = Lεu, u(0, x) = f(x)

are close to the corresponding solutions with Lε replaced by L.
The probabilistic approach to homogenization gives a good description of this topic in the

periodic or ergodic case. It is based on the asymptotic analysis of the diffusion process asso-
ciated to the operator Lε. The averaged coefficient a is then determined as a certain ”mean”
of a with respect to the invariant probability measure of the diffusion process associated to
L.

There is a vast literature on the homogenization of PDEs with periodic coefficients, see for
example monographs [2, 10, 19] and the references therein. There also exists a considerable
literature on the study of asymptotic analysis of stochastic differential equations (SDEs) with
periodic structures and its connection with homogenization of second order partial differential
equations (PDEs). Actually, coming from relations with semilinear and/or quasilinear PDEs
given by a generalized Feynman-Kac formula, forward-backward SDEs (FBSDEs) have also
been considered, see among others [3, 4, 5, 8, 9, 11, 17, 20, 21] and the references therein.

In the case where the periodicity and the ergodicity are not assumed, we don’t have
enough information about the invariant probability measure and hence, the situation is
more delicate.

In [13], Khasminskii & Krylov have considered the averaging of the following family of
diffusions process





x1, ε
t = x1 + 1

ε

∫ t

0
ϕ(x1, ε

s , x2, ε
s )dWs

x2, ε
t = x2 +

∫ t

0
b(1)(x1, ε

s , x2, ε
s )ds+

∫ t

0
σ(1)(x1, ε

s , x2, ε
s )dW̃s

(1.1)

where x1, ε
t is a null-recurrent fast component and x2, ε

t is a slow component. The function

ϕ (resp. σ) is IR-valued (resp. IRd×(k−1)-valued ). (W, W̃ ) is a IRk-dimensional standard

Brownian motion which components W is one dimensional while W̃ is IRk−1-dimensional.
They then studied the averaging of system (1.1). They defined the averaged coefficients as
a limit in C̀esaro sense. With the additional assumption that the presumed SDE limit is
weakly unique, they proved that the process (εx1, ε

t , x2, ε
t ) converges in distribution towards

a Markov diffusion (X1
t , X

2
t ). As a byproduct, they derived the limit behavior for the linear

PDE associated to (εx1, ε
t , x2, ε

t ), in the case where the weak uniqueness holds in the Sobolev
space W 1,2

d+1,loc.
In the present note, exploiting the idea of [13], we study the homogenization of a parabolic

semilinear PDE in the case where both the periodicity and the ergodiciy are not be assumed.
We define the averaged coefficients as a limits in C̀esaro sense. In such a way, the limit
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coefficients could be discontinuous. More precisely, we consider the following sequence of
semi-linear PDEs, indexed by ε > 0,





∂vε

∂s
(s, x1, x2) = Lε(x1, x2)v

ε(s, x1, x2) + f(x1

ε
, x2, v

ε(s, x1, x2)), s ∈ (0, t)

vε(0, x1, x2) = H(x1, x2)
(1.2)

where

Lε(x1, x2) = a00(
x1

ε
, x2)

∂2

∂2x1
+

d∑

i, j=1

aij(
x1

ε
, x2)

∂2

∂x2i∂x2j

+
d∑

i=1

b
(1)
i (

x1

ε
, x2)

∂

∂x2i

,

and the real valued measurable functions f and H are defined on IRd+1 × IR and IRd+1

respectively.
We put,

1

2
ϕ2 := a00, aij := 1

2
(σ(1)σ(1) ∗)ij, i, j = 1, ..., d, and σ =

(
ϕ 0
0 σ(1)

)
.

One has σ ∈ IR(d+1)×k with




σ00 = ϕ,
σ0j = 0, j = 1, ..., k − 1
σi0 = 0, i = 1, ..., d

σij = σ
(1)
ij , i = 1, ..., d, j = 1, ..., k − 1

We denote, Xε := (X1, ε, X2, ε), b = (0, b(1))∗, and B = (W, W̃ )

The PDE (1.2) is then connected to the Markovian FBSDEs,




Xε
s = x+

∫ s

0
b(X

1, ε
u

ε
, X2, ε

u )du+
∫ s

0
σ(X

1, ε
u

ε
, X2, ε

u )dBu,

Y ε
s = H(Xε

t ) +
∫ t

s
f(X

1, ε
u

ε
, X2, ε

u , Y ε
u )du−

∫ t

s
Zε

u dM
Xε

u , ∀ s ∈ [0, t]

(1.3)

where x = (x1, x2) and MXε

is a martingale part of the process Xε.

It is well known that (under some conditions) the representation vε(t, x) = Y ε
0 holds.

The aim of the present paper is:
1) to show that the sequence of process (Xε

t , Y
ε
t ,
∫ t

s
Zε

u dM
Xε

u )0≤s≤t converges in law to

the process (Xt, Yt,
∫ t

s
Zu dM

X
u )0≤s≤t which is the unique solution to the FBSDE,





Xs = x+
∫ s

0
b(Xu)du+

∫ s

0
σ(Xu)dBu, 0 ≤ s ≤ t.

Ys = H(Xt) +
∫ t

s
f(Xu, Yu)du−

∫ t

s
ZudM

X
u , 0 ≤ s ≤ t

(1.4)

where σ, b and f are respectively the average of σ, b and f .

2) As a consequence, we establish that vε tends towards v, which solves the following
averaged equation in the Lp-viscosity sense.





∂v
∂s

(s, x1, x2) = L(x1, x2)v(s, x1, x2) + f(x1, x2, v(s, x1, x2)) 0 < s ≤ t

v(0, x1, x2) = H(x1, x2)
(1.5)
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where L(x1, x2) =
∑

i, j

aij(x1, x2)
∂2

∂xi∂xj

+
∑

i

bi(x1, x2)
∂

∂xi

, is the averaged operator.

The method used to derive the averaged BSDE is based on weak convergence in the S-
topology and is close to that used in [20]. In our framework, we show that the limit FBSDE
(1.4) has a unique solution. However, due to the discontinuity of the coefficients, the classical
viscosity solution is not defined for the averaged PDE (1.5). We then use the notion of
”Lp−viscosity solution”. We use BSDEs techniques to establish the existence of Lp−viscosity
solution for the averaged PDE. The notion of Lp-viscosity solution has been introduced by
Cafarelli et al. in [6] to study fully nonlinear PDEs with measurable coefficients. However,
even if the notion of Lp-viscosity solution is available for PDEs with merely measurable
coefficients, one require continuity property for such solutions. In our case, the lack of L2-
continuity property for the flow Xx := (X1, x, X2, x) transfer the difficulty to the backward
one and hence we cannot prove the L2-continuity of the process Y . To overcome this difficulty,
we establish weak continuity for the flow x 7→ (X1, x, X2, x) and use the fact that Y x

0 is
deterministic, to derive the continuity property for Y x

0 .
The paper is organized as follows: In section 2, we make some notations and assumptions.

Our main results are stated in section 3. Section 4 and 5 are devoted to the proofs.

2 Notations and assumptions

2.1 Notations

For a given function g(x1, x2), we define

g+(x2) := lim
x1→+∞

1

x1

∫ x1

0

g(t, x2)dt

g−(x2) := lim
x1→−∞

1

x1

∫ x1

0

g(t, x2)dt

The limit in C̀esaro of g is defined by,

g±(x1, x2) := g+(x2)1{x1>0} + g−(x2)1{x1≤0}

Let ρ(x1, x2) := a00(x1, x2)
−1(= [1

2
ϕ2(x1, x2)]

−1) and denote by b(x1, x2), a(x1, x2) and

f(x1, x2, y), the averaged coefficients defined as follows,

bi(x1, x2) =
(ρbi)

±(x1, x2)

ρ±(x1, x2)
, i = 1, ..., d

aij(x1, x2) =
(ρaij)

±(x1, x2)

ρ±(x1, x2)
, i, j = 0, 1, ..., d

f(x1, x2, y) =
(ρf)±(x1, x2, y)

ρ±(x1, x2)
,

It’s worth noting that b, a and f may be discontinuous at x1 = 0.



Homogenization of semi-linear PDEs with discontinuous coefficients 5

2.2 Assumptions.

We consider the following conditions,

(A1) The function b(1), σ(1), ϕ are uniformly Lipschitz in the variables (x1, x2),

(A2) for each x1, their derivative in x2 up to and including second order derivatives are
bounded continuous functions of x2.

(A3) a := (σ(1)σ(1) ∗) is uniformly elliptic, i.e: ∃Λ > 0; ∀x, ξ ∈ IRd, ξ∗a(x)ξ ≥ Λ|ξ|2.
Moreover, there exist positive constants C1, C2, C3 such that





(i) C1 ≤ a00(x1, x2) ≤ C2

(ii) |a(x1, x2)| + |b(x1, x2)|2 ≤ C3(1 + |x2|2)

(B1) Let Dx2
u and D2

x2
u denote respectively the gradient vector and the matrix of second

derivatives of u with respect to x2. The following limits are uniform in x2,

1

x1

∫ x1

0

ρ(t, x2)dt −→ ρ±(x2) as x1 → ±∞

1

x1

∫ x1

0

Dx2
ρ(t, x2)dt −→ Dx2

ρ±(x2) as x1 → ±∞

1

x1

∫ x1

0

D2
x2
ρ(t, x2)dt −→ D2

x2
ρ±(x2) as x1 → ±∞

(B2) For every i and j, the coefficients ρbi, Dx2
(ρbi), D

2
x2

(ρbi), ρaij , Dx2
(ρaij),

D2
x2

(ρaij) have limits in C̀esaro sense.

(B3) For every function k ∈ {ρ, ρbi, Dx2
(ρbi), D

2
x2

(ρbi), ρaij , Dx2
(ρaij), D

2
x2

(ρaij)}, there
exists a bounded function α such that





1
x1

∫ x1

0
k(t, x2)dt− k±(x1, x2) = (1 + |x2|2)α(x1, x2),

lim
|x1|−→∞

sup
x2∈IR

d

|α(x1, x2)| = 0.
(2.1)

(C1)

(i) For every (x1, x2) ∈ IRd+1, f(x1, x2, ·) ∈ C2
b (IR), the bounds being uniform in (x1, x2).

(ii) H is continuous and bounded.

(C2) ρf has a limit in C̀esaro sense and there exists a bounded measurable function β such
that





1
x1

∫ x2

0
ρ(t, x2)f(t, x2, y)dt− (ρf)±(x1, x2, y) = (1 + |x2|2 + |y|2)β(x1, x2, y)

lim
|x1|→∞

sup
(x2, y)∈IRd×IR

|β(x1, x2, y)| = 0,
(2.2)
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(C3) For each x1, ρf has derivatives up to second order in (x2, y) and these derivatives are
bounded and satisfy (C2).

Throughout the paper, (A) stands for conditions (A1), (A2), (A3); (B) for conditions (B1),
(B2), (B3) and (C) for (C1), (C2), (C3).

3 The main result.

Consider the equation

X t, x
s = x+

∫ s

t

b(X t, x
u )du+

∫ s

t

σ(X t, x
u )dBu, t ≤ s ≤ T (3.1)

Assume that (A), (B) hold. Then,
• From Khasminskii and Krylov [13] we have: the process Xε := (X1, ε, X2, ε) converges

in distribution to the process X := (X1, X2).
and

• From Krylov [16] we have: The limit X = (X1, X2) is a unique weak solution to SDE
(3.1).

We now define the Lp-viscosity solution. This notion has been introduced by Caffarelli
et al. in [6] to study PDEs with measurable coefficients. Wide presentation of this topic can
be found in [6, 7].
Let g : [0, T ] × IRd+1 × IR −→ IR be a measurable function and

L(x1, x2) :=
∑

i, j

aij(x1, x2)
∂2

∂xi∂xj

+
∑

i

bi(x1, x2)
∂

∂xi

be the operator associated to the

solution to SDE (3.1).
We consider the parabolic equation,




∂v
∂s

(s, x1, x2) + L(x1, x2)v(s, x1, x2) + g(s, x1, x2, v(s, x1, x2)) = 0, t ≤ s < T

v(T, x1, x2) = H(x1, x2).
(3.2)

Definition 3.1. Let p be an integer such that p > d+ 2.
(a)- A function v ∈ C

(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity sub-solution of the PDE (3.2),

if for every x ∈ IRd+1, v(T, x) ≤ H(x) and for every ϕ ∈ W 1, 2
p, loc

(
[0, T ] × IRd+1, IR

)
and

(t̂, x̂) ∈ [0, T ] × IRd+1 at which v − ϕ has a local maximum, one has

ess lim
(s, x)→(t̂, x̂)

inf

{
−∂ϕ
∂s

(s, x1, x2) −G(s, x, ϕ(s, x))

}
≤ 0.

(b)- A function v ∈ C
(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity super-solution of the PDE

(3.2), if for every x ∈ IRd+1, v(T, x) ≥ H(x) and for every ϕ ∈ W 1, 2
p, loc

(
[0, T ] × IRd+1, IR

)

and (t̂, x̂) ∈ [0, T ] × IRd+1 at which v − ϕ has a local minimum, one has

ess lim
(s, x)→(t̂, x̂)

sup

{
−∂ϕ
∂s

(s, x1, x2) −G(s, x, ϕ(s, x))

}
≥ 0.
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Here, G(s, x, ϕ(s, x)) = L(x1, x2)ϕ(s, x1, x2) + g(s, x1, x2, v(s, x1, x2)) is assumed to be
merely measurable on the variable x = (x1, x2).

(c)- A function v ∈ C
(
[0, T ] × IRd+1, IR

)
is a Lp-viscosity solution if it is both a Lp-

viscosity sub-solution and super-solution.

Remark 3.2. The definition (a) means that for every ε > 0, r > 0, there exists a set A ⊂
Br(t̂, x̂) of positive measure such that, ∀ (s, x) ∈ A,

−∂ϕ
∂s

(s, x1, x2) − L(x1, x2)ϕ(s, x1, x2) − g(s, x1, x2, v(s, x1, x2)) ≤ ε.

The main result is,

Theorem 3.3. Assume (A), (B), (C). Then, the sequence of process (Xε
t , Y

ε
t ,
∫ t

s
Zε

u dM
Xε

u )

converges in law to the process (Xt, Yt,
∫ t

s
Zu dM

X
u ) which is the unique solution to FBSDE

(1.4).

Theorem 3.4. Assume (A), (B), (C). For ε > 0, let vε be the unique solution to the problem

(1.2). Let (Y
(t,x)
s )s be the unique solution of BSDE (1.4).

Then,

(i) Equation (1.5) has a unique Lp-viscosity solution v such that v(t, x) = Y
(t,x)
0 .

(ii) for every (t, x), vε(t, x) converges to v(t, x).

Remark 3.5. 1) The conclusion of Theorem 3.3 remains valid if we take the forward com-
ponent of our FBSDE (1.3) as that of [13] and replace the Brownian motion B by W . The
dimensions and the assumptions should be accordingly rearranged. For instance, in place
equation (1.3), we consider the FBSDE,





Xε
s = x+

∫ s

0
b(X

1, ε
u

ε
, X2, ε

u )du+
∫ s

0
σ(X

1, ε
u

ε
, X2, ε

u )dWu,

Y ε
s = H(Xε

t ) +
∫ t

s
f(X

1, ε
u

ε
, X2, ε

u , Y ε
u )du−

∫ t

s
Zε

u dM
Xε

u , ∀ s ∈ [0, t]

(3.3)

where x = (x1, x2) and





X1, ε
t = x1 +

∫ t

0
ϕ(X

1, ε
s

ε
, X2, ε

s )dWs

X2, ε
t = x2 +

∫ t

0
b(1)(X

1, ε
s

ε
, X2, ε

s )ds+
∫ t

0
σ(1)(X

1, ε
s

ε
, X2, ε

s )dWs

(3.4)

In this case: ϕ is a IRk−valued function, W is an IRk−Brownian motion and σ(1) = (σ
(1)
ij )

is a d × k matrix. The nondegeneracy condition A3)-i) imposed on ϕ should be replaced
by, C1 ≤

∑k

i=1 ϕi(x1, x2) ≤ C2. The infinitesimal generator L associated to the diffusion
component will be more complicated since it takes account on other (mixed) second order
derivatives.

2) If in Theorem 3.3, we replace the initial condition of the forward component in equation
(1.3) by (εx1, x2), then we obtain the same limit with initial condition (0, x2) instead of
(x1, x2).
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4 Proof of Theorem 3.3.

4.1 Tightness and convergence for the BSDE.

Proposition 4.1. There exists a positive constant C which does not depend on ε such that

sup
ε

IE

(
sup

0≤s≤t

|Y ε
s |2 +

∫ t

0

|Zε
s |2 d〈MXε〉s

)
≤ C.

Proof. Throughout this proof, K, C are positive constants which depends only on (s, t)
and may change from line to line. It is easy to check that for all k ≥ 1,

sup
ε

IE

(
sup

0≤s≤t

[
|X1, ε

s |2k + |X2, ε
s |2k

])
< +∞. (4.1)

Using Itô’s formula, we get:

|Y ε
s |2 +

∫ t

s

|Zε
u|2d〈MXε 〉u ≤ |H(Xε

t )|2 +K

∫ t

s

|Y ε
u |2du+

∫ t

s

|f(X
1, ε

u , X2, ε
u , 0)|2du

− 2

∫ t

s

〈Y ε
u , Z

ε
udM

Xε

s 〉.

Passing to expectation, it is then follows by using Gronwall’s lemma that, there exists a
positive constant C which does not depend on ε such that,

IE
(
|Y ε

s |2
)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)
, ∀s ∈ [0, t]

We deduce that

IE

(∫ t

s

|Zε
u|2d〈MXε 〉u

)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)
(4.2)

Combining (4.2) and the Burkhölder-Davis-Gundy inequality, we get

IE

(
sup

0≤s≤t

|Y ε
t |2 +

1

2

∫ t

0

|Zε
u|2d〈MXε 〉u

)
≤ CIE

(
|H(Xε

t )|2 +

∫ t

0

|f(X
1, ε

u , X2, ε
u , 0)|2du

)

In view of condition (C1 − iii) and (4.1), the proof is complete.

Proposition 4.2. For ε > 0, let Y ε be the process defined by equation 1.3 and Mε) be its
martingale part. The sequence (Y ε, Mε)ε>0 is tight on the space D ([0, t], IR)×D ([0, t], IR)
endowed with the S-topology.

Proof. Since Mε is a martingale, then by [18] or [12], the Meyer-Zheng tightness criteria is
fulfilled whenever

sup
ε

(
CV (Y ε) + IE

(
sup

0≤s≤t

|Y ε
t | + |Mε

t |
))

< +∞. (4.3)

where the conditional variation CV is defined in appendix A.
By [22], the conditional expectation CV (Y ε) satisfies

CV (Y ε) ≤ KIE

(∫ t

0

|f(X
1, ε

s , X2, ε
s , Y ε

s )|2ds
)
,

where K is a constant which only depends on t.
Combining condition (C1 ) and Proposition 4.1, we deduce (4.3).
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Proposition 4.3. There exists (Y, M) and a countable subset D of [0, t] such that along a
subsequence of ε,

(i) (Y ε,Mε)
law
=⇒ (Y,M) on D ([0, t], IR) ×D ([0, t], IR) endowed with the S-topology.

(ii) (Y ε, Mε) −→ (Y, M) in finite-distribution on D
c.

(iii) (X1,ε, X2,ε, Y ε) ⇒ (X1, X2, Y ) , in the sense of weak convergence in C(IR+ × IRd+1) ×
D(IR+ × IR), equipped with the product of the uniform convergence on compact sets and the
S topologies.

Proof. (i)- From Proposition 4.2, the family (Y ε, Mε)ε is tight on D ([0, t], IR)×D ([0, t], IR)
endowed with the S-topology. Hence, along a subsequence (still denoted by ε), (Y ε, Mε)ε

converges in law on D ([0, t], IR) ×D ([0, t], IR) towards a càd-làg process
(
Y , M

)
.

(ii)- Thanks to Theorem 3.1 in Jakubowski [12], there exists a countable set D such
that along a subsequence the convergence in law holds. Moreover, the convergence in finite-
distribution holds on D

c.

4.2 Identification of the limit finite variation process.

Proposition 4.4. Let (Y,M), the limit process defined in Proposition 4.3. Then,
(i) For every s ∈ [0, t] − D,





Ys = H(Xt) +
∫ t

s
f(X1

u, X
2
u, Y )du− (Mt −Ms),

IE
(
sup0≤s≤t |Ys|2 + |X1

s |2 + |X2
s |2
)
≤ C.

(4.4)

(ii) M is a Fs-martingale, where Fs := σ{Xu, Yu, 0 ≤ u ≤ s} augmented with the IP-null
sets.

To prove this proposition, we need the following lemmas.

Lemma 4.5. Assume (A), (B), (C2) and (C3). For y ∈ IR, let V ε(x1, x2, y) denote the
solution of the following equation:





a00(
x1

ε
, x2)D

2
x1
u(x1, x2, y) = f(x1

ε
, x2, y) − f(x1, x2, y)

u(0, x2) = Dx1
u(0, x2) = 0.

(4.5)

Then,

(i) Dx1
V ε(x1, x2, y) = x1(1 + |x2|2 + |y|2)β(

x1

ε
, x2, y) − x1(1 + |x2|2)m(

x1

ε
, x2, y),

(ii) for any Kε(x1, x2, y) ∈
{
V ε, Dx2

V ε, D2
x2
V ε, Dx1

Dx2
V ε, DyV

ε, D2
yV

ε, Dx1
DyV

ε, Dx2
DyV

ε
}

it holds,

Kε(x1, x2, y) = x2
1(1 + |x2|2 + |y|2)β(

x1

ε
, x2, y) + x2

1(1 + |x2|2)m(
x1

ε
, x2, y)

where m(x1

ε
, x2, y) := (ρf)±(x1, x2, y)

ρ±(x1, x2)
α(x1

ε
, x2) and α(x1, x2), β(x1, x2, y) are various bounded

functions which satisfy property (2.1)and (2.2) respectively.
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Proof. We will adapt the idea of [13] to our situation. For a fixed y, we set

F (
x1

ε
, x2, y) :=

1

x1

∫ x1

0

ρ(
t

ε
, x2)g(

t

ε
, x2, y)dt

where g(x1

ε
, x2, y) := f(x1

ε
, x2, y) − f(x1, x2, y).

For x1 > 0, we have

F (
x1

ε
, x2, y) =

1

x1

∫ x1

0

ρ(
t

ε
, x2)f(

t

ε
, x2, y)dt− (ρf)+(x2, y)

+ (ρf)+(x2, y) −
(ρf)+(x2, y)

ρ+(x2)

1

x1

∫ x1

0

ρ(
t

ε
, x2)dt

= (1 + |x2|2 + |y|2)β1(
x1

ε
, x2, y)

+ (ρf)+(x2, y)

[
1 − 1

ρ+(x2)x1

∫ x1

0

ρ(
t

ε
, x2)dt

]

= (1 + |x2|2 + |y|2)β1(
x1

ε
, x2, y) − (1 + |x2|2)

(ρf)+(x2, y)

ρ+(x2)
α1(

x1

ε
, x2)

Since, Dx1
V ε(x1, x2, y) = x1F (x1

ε
, x2, y), we derive the result for Dx1

V ε(x1, x2, y). Further,
by integrating, we get

V ε(x1, x2, y) = x2
1(1 + |x2|2 + |y|2)

(
(
ε

x1

)2

∫ x1
ε

0

tβ1(t, x2, y)dt

)

− (1 + |x2|2)
(ρf)+(x2, y)

ρ+(x2)

(
(
ε

x1

)2

∫ x1
ε

0

tα1(t, x2)dt

)

Clearly, β(x1

ε
, x2, y) := ( ε

x1
)2
∫ x1

ε

0
tβ1(t, x2, y)dt, α(x1

ε
, x2) = ( ε

x1
)2
∫ x1

ε

0
tα(t, x2)dt

satisfy (2.1) and (2.2) respectively. The same argument can be used in the case x1 < 0. The
result for Dx2

V ε(x1, x2, y), D
2
x2
V ε(x1, x2, y) and Dx1

Dx2
V ε(x1, x2, y) can obtained by using

similar arguments.

Lemma 4.6. sup
0≤s≤t

∣∣∣∣
∫ s

0

(
f(
X1, ε

u

ε
, X2, ε

u , Y ε
u ) − f(X1, ε

u , X2, ε
u , Y ε

u )

)
du

∣∣∣∣ tends to zero

in probability as ε −→ 0.

Proof. Let V ε denote the solution of equation (4.5). Note that V ε has first and second
derivatives in (x1, x2, y) which are possibly discontinuous only at x1 = 0. Then, as in [13],
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since ϕ is non degenerate, we can use Itô-Krylov formula to get

V ε(X1, ε
s , X2, ε

s , Y ε
s ) = V ε(x1, x2, Y

ε
0 ) +

∫ s

0

[
f(
X1, ε

u

ε
, X2, ε

u , Y ε
u ) − f(X1, ε

u , X2, ε
u , Y ε

u )
]
du

+

∫ s

0

aij(X
1, ε
u , X2, ε

u )
∂2V ε

∂x2i∂x2j

(X1, ε
u , X2, ε

u , Y ε
u )du+

∫ s

0

b
(1)
j (X1, ε

u , X2, ε
u )

∂V ε

∂x2j

(X1, ε
u , X2, ε

u , Y ε
u )du

+

∫ s

0

[
∂V ε

∂x1

(X1, ε
u , X2, ε

u , Y ε
u )ϕ(X1, ε

u , X2, ε
u )dWu +

∂V ε

∂x2

(X1, ε
u , X2, ε

u , Y ε
u )σ(1)(X1, ε

u , X2, ε
u )dW̃u]

−
∫ s

0

∂V ε

∂y
(X1,ε

u , X2,ε
u , Y ε

u )f(
X1,ε

u

ε
,X2,ε

u , Y ε
u )du+

∫ s

0

∂V ε

∂y
(X1,ε

u , X2,ε
u , Y ε

u )Zε
uσ(

X1,ε
u

ε
,X2,ε

u )dBu

+
1

2

∫ s

0

∂2V ε

∂y∂y
(X1,ε

u , X2,ε
u , Y ε

u )Zε
uσσ

∗(
X1,ε

u

ε
,X2,ε

u )(Zε
u)

∗du (4.6)

+
1

2

∫ s

0

∂2V ε

∂y∂x
(X1,ε

u , X2,ε
u , Y ε

u )σσ∗(
X1,ε

u

ε
,X2,ε

u )(Zε
u)

∗du.

In view of Lemma 4.5, it is obvious to see that V ε(x1, x2, Y
ε
0 ) tends to zero. Once again,

from Lemma 4.5, we have

∣∣V ε(X1, ε
s , X2, ε

s , Y ε
s )
∣∣ ≤ ε

[
(1 + |X2, ε

s |2 + |Y ε
s |2)|β(

X1, ε
s

ε
, X2, ε

s , Y ε
s )|
]

+ ε

[
(1 + |X2, ε

s |2)(ρf)±(X2, ε
s , Y ε

s )

ρ±(X2, ε
s )

|α(
X1, ε

s

ε
, X2, ε

s )|
]

+ 1{|X1, ε
s |≥√

ε}|X1, ε
s |2

[
(1 + |X2, ε

s |2 + |Y ε
s |2)|β(

X1, ε
s

ε
, X2, ε

s , Y ε
s , Z

ε, n
s )

]

+ 1{|X1, ε
s |≥√

ε}|X1, ε
s |2

[
(1 + |X2, ε

s |2)(ρf)±(X2, ε
s , Y ε

s )

ρ±(X2, ε
s )

|α(
X1, ε

s

ε
, X2, ε

s )|
]

From the estimates of the processesX1, ε
s , X2, ε

s , Y ε
s and the fact that (ρf)± satisfies conditions

(C), we deduce that

IE

(
sup

0≤s≤t

|V ε, n(X1, ε
s , X2, ε

s , Y ε
s )|
)

≤ K

(
ε+ sup

|x1|≥
√

ε

sup
(x2, y)

|β(
x1

ε
, x2, y)| + sup

|x1|≥
√

ε

sup
x2

|α(
x1

ε
, x2)|

)

Then, since α and β satisfy (2.1) and (2.2) respectively, the right hand side of the previous
inequality tends to zero as ε −→ 0. Similarly, one can show that

+

∫ s

0

aij(X
1, ε
u , X2, ε

u )
∂2V ε

∂x2i∂x2j

(X1, ε
u , X2, ε

u , Y ε
u )du+

∫ s

0

b
(1)
j (X1, ε

u , X2, ε
u )

∂V ε

∂x2j

(X1, ε
u , X2, ε

u , Y ε
u )du

+

∫ s

0

[
∂V ε

∂x1
(X1, ε

u , X2, ε
u , Y ε

u )ϕ(X1, ε
u , X2, ε

u )dWu +
∂V ε

∂x2
(X1, ε

u , X2, ε
u , Y ε

u )σ(1)(X1, ε
u , X2, ε

u )dW̃u]

−
∫ s

0

∂V ε

∂y
(X1,ε

u , X2,ε
u , Y ε

u )f(
X1,ε

u

ε
,X2,ε

u , Y ε
u )du+

∫ s

0

∂V ε

∂y
(X1,ε

u , X2,ε
u , Y ε

u )Zε
uσ(

X1,ε
u

ε
,X2,ε

u )dBu

+
1

2

∫ s

0

∂2V ε

∂y∂y
(X1,ε

u , X2,ε
u , Y ε

u )Zε
uσσ

∗(
X1,ε

u

ε
,X2,ε

u )(Zε
u)

∗du

+
1

2

∫ s

0

∂2V ε

∂y∂x
(X1,ε

u , X2,ε
u , Y ε

u )σσ∗(
X1,ε

u

ε
,X2,ε

u )(Zε
u)

∗du
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converge to zero in probability. Let us give an explanation concerning the one but last term,
which is the most delicate one.∣∣∣∣

∫ s

0

∂2V ε

∂y∂y
(X1,ε

u , X2,ε
u , Y ε

u )Zε
uσσ

∗(
X1,ε

u

ε
,X2,ε

u )(Zε
u)

∗du

∣∣∣∣

≤ C sup
0≤u≤s

(1 + |X2,ε
u |2)

∣∣∣∣
∂2V ε

∂y∂y
(X1,ε

u , X2,ε
u , Y ε

u )

∣∣∣∣
∫ s

0

|Zε
u|2du

Since {
∫ s

0
|Zε

u|2du, 0 ≤ s ≤ t} is the increasing process associated to a bounded martingale,

so the Lp(IP) norm of
∫ t

0
|Zε

u|2du is bounded, for all p ≥ 1. Moreover sup0≤u≤t(1 + |X2,ε
u |2) is

also bounded in all Lp(IP) spaces. Finally the same argument as above shows that

sup
0≤u≤s

∣∣∣∣
∂2V ε

∂y∂y
(X1,ε

u , X2,ε
u , Y ε

u )

∣∣∣∣→ 0

in probability, as ε→ 0.

Lemma 4.7.

∫ .

0

f(X1, ε
u , X2, ε

u , Y ε
u )du

law
=⇒

∫ .

0

f(X1
u, X

2
u, Yu)du on C([0, t], IR) as ε −→ 0.

For the proof of this Lemma, we need the following two results.

Lemma 4.8. Let X1
s := x1 +

∫ s

0

ϕ(X1
u, X

2
u)dWu, 0 ≤ s ≤ t, and, assume (A2-i), (B1).

For ε > 0, let Dε
n :=

{
s : s ∈ [0, t] / X1,ε

s ∈ B(0,
1

n
)

}
.

Define also Dn :=

{
s : s ∈ [0, t] / X1

s ∈ B(0,
1

n
)

}
.

Then, there exists a constant c > 0 such that for each n ≥ 1, ε > 0,

IE|Dε
n| ≤

c

n
and IE|Dn| ≤

c

n
,

where |. | denotes the Lebesgue measure.

Proof. Consider the sequence (Ψn) of functions defined as follows,

Ψn(x) =





−x/n− 1/2n2 if x ≤ −1/n

x2/2 if − 1/n ≤ x ≤ 1/n

x/n− 1/2n2 if x ≥ 1/n

We put, ϕ := a00 := ρ(x1, x2)
−1.

Using Itô’s formula, we get

Ψn(X1
s ) = Ψn(X

1
0 ) +

∫ s

0

Ψ
′

n(X
1
s )ϕ(X1

s , X
2
s )dWs +

1

2

∫ s

0

Ψ”
n(X1

s )ϕ2(X1
s , X

2
s )ds, s ∈ [0, t]

Since ϕ is lower bounded by C1, taking the expectation, we get

C1IE

∫ t

0

1[− 1

n
, 1

n
](X

1
s )ds ≤ IE

∫ t

0

Ψ”
n(X1

s )ϕ2(X1
s , X

2
s )ds

= 2IE
[
Ψn(X1

t ) − Ψn(x1)
]

It follows that IE(|Dn|) ≤ 2C−1
1 IE [Ψn(X1

t ) − Ψn(x1)] ≤ c/n. The same argument, applies to
Dε

n, allows us to show the first estimate.
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Lemma 4.9. Consider a collection {Zε, ε > 0} of real valued random variables, and a real
valued random variable Z. Assume that for each n ≥ 1, we have the decompositions

Zε = Z1,ε
n + Z2,ε

n

Z = Z1
n + Z2

n,

such that for each fixed n ≥ 1,

Z1,ε
n ⇒ Z1

n

IE|Z2,ε
n | ≤ c√

n

IE|Z2
n| ≤

c√
n
.

Then Zε ⇒ Z, as ε→ 0.

Proof. The above assumptions imply that the collection of random variables {Zε, ε > 0}
is tight. Hence the result will follow from the fact that

IEΦ(Zε) → IEΦ(Z), as ε→ 0

for all Φ ∈ Cb(IR) which is uniformly Lipschitz. Let Φ be such a function, and denote by K
its Lipschitz constant. Then

|IEΦ(Zε) − IEΦ(Z)| ≤ IE|Φ(Zε) − Φ(Z1,ε
n )| + +|IEΦ(Z1,ε

n ) − IEΦ(Z1
n)| + IE|Φ(Z1

n) − Φ(Z)|
≤ |IEΦ(Z1,ε

n ) − IEΦ(Z1
n)| + 2K

c√
n
.

Hence
lim sup

ε→0
|IEΦ(Zε) − IEΦ(Z)| ≤ 2K

c√
n
,

for all n ≥ 1. The result follows.

Proof of Lemma 4.7. For each n ≥ 1, define a function θn ∈ C(IR, [0, 1]) such that
θn(x) = 0 for |x| ≤ 1/(2n), and θn(x) = 1 for |x| ≥ 1/n. We have

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )ds =

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )θn(X1,ε

s )ds+

∫ t

0

f(X1,ε
s , X2,ε

s , Y ε
s )[1 − θn(X1,ε

s )]ds

= Z1,ε
n + Z2,ε

n∫ t

0

f(X1
s , X

2
s , Ys)ds =

∫ t

0

f(X1
s , X

2
s , Ys)θn(X1

s )ds+

∫ t

0

f(X1
s , X

2
s , Ys)[1 − θn(X1

s )]ds

= Z1
n + Z2

n

Note that the mapping

(x1, x2, y) →
∫ t

0

f(x1
s, x

2
s, ys)θn(x1

s)ds

is continuous from C([0, t]) ×D([0, t]) equipped with the product of the sup–norm and the
S topologies into IR. Hence, from Proposition 4.3, Z1,ε

n ⇒ Z1
n as ε→ 0, for each fixed n ≥ 1.
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Moreover, from Lemma 4.8, the linear growth property of f , Proposition 4.1 and (4.1), we
deduce that

E|Z2,ε
n | ≤ c√

n
, E|Z2

n| ≤
c√
n
.

Lemma 4.7 now follows from Lemma 4.9. �

Proof of Proposition 4.4 Passing to the limit in the backward component of the equation
(1.3) and using Lemmas 4.6 and 4.7, we derive assertion (i).
Assertion (ii) can be proved by using the same arguments that developed in [21] section 6.

4.3 Identification of the limit martingale.

Proposition 4.10. Let (Ȳs, Z̄s, 0 ≤ s ≤ t) be the unique solution to BSDE (H(Xt), f̄).
Then, for every s ∈ [0, t],

IE|Ys − Ȳs|2 + IE

(
[M −

∫ .

0

Z̄udM
X
u ]t − [M −

∫ .

0

Z̄udM
X
u ]s

)
= 0.

Proof. For every s ∈ [0, t] − D, we have





Ys = H(Xt) +
∫ t

s
f(Xu, Yu)du− (Mt −Ms)

Ȳs = H(Xt) +
∫ t

s
f(Xu, Ȳu)du−

∫ t

s
Z̄udM

X
u

Arguing as in [21], we show that M̄ :=
∫ .

s
Z̄udM

X
u is a Fs-martingale.

Since f satisfies condition (C1), we get by Itô’s formula, that

IE|Ys − Y s|2 + IE

(
[M −

∫ .

0

Z̄udM
X
u ]t − [M −

∫ .

0

Z̄udM
X
u ]s

)
≤ CIE

∫ t

s

|Yu − Y u|2du.

Therefore, Gronwall’s lemma yields that IE|Ys − Y s|2 = 0, ∀s ∈ [0, t] − D. But, Ȳ is
continuous, Y is càd-lag, and, D is countable. Hence, Ys = Y s, IP-a.s, ∀s ∈ [0, t].

Moreover, we deduce that, IE

(
[M −

∫ .

0

Z̄udM
X
u ]t − [M −

∫ .

0

Z̄udM
X
u ]s

)
= 0.

As a consequence of Proposition 4.10, we have

Corollary 4.11.

(
Y ε,

∫ .

0

Zε
udM

Xε

u

)
law
=⇒

(
Y,

∫ .

0

Z̄udM
X
u

)
.

5 Proof of Theorem 3.4.

Since, under assumptions (A1) and (A2), the SDE (3.1) is weakly unique, the martingale
problem associated to X = (X1, X2) is well posed. We then have the following:

Proposition 5.1. Assume that g satisfies (C1). Then,

(i) For a fixed positive number T , the BSDE

Y t, x
s = H(X t, x

T ) +

∫ T

s

g(u, X t, x
u , Y t, x

u )du−
∫ T

s

Zt, x
u dMXt, x

u , t ≤ s ≤ T.
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admits a unique solution (Y t, x
s , Zt, x

s )t≤s≤T such that the component (Y t, x
s )t≤s≤T is bounded.

(ii) If moreover, the function (t, x) ∈ [0, T ] × IRd+1 7−→ v(t, x) := Y t, x
t is continuous, then

it is a Lp-viscosity solution of the PDE (3.2).

Proof. (i) Thanks to Remark 3.5 of [20], it is enough to prove existence and uniqueness for
the BSDE,

Y t, x
s = H(X t, x

T ) +

∫ T

s

g(u, X t, x
u , Y t, x

u )du−
∫ T

s

Zt, x
u dBu, t ≤ s ≤ T.

But, this can be proved by usual arguments of BSDEs. For instance, it’s obvious that
uniqueness holds under (C1), and, we can prove the existence of the solution by using a
Picard type approximation.
(ii) We only prove that v is Lp- viscosity sub-solution. The proof for super-solution can be
performed similarly. For ϕ ∈W 1, 2

p, loc

(
[0, T ] × IRd+1, IR

)
, let (t̂, x̂) ∈ [0, T ]× IRd+1 be a point

which is a local maximum of v − ϕ. Since p > d+ 2, then ϕ has a continuous version which
we consider bellow. We assume without loss of generality that v(t̂, x̂) = ϕ(t̂, x̂). Following
Cafarelli et al., assume that there exists ε0, r0 > 0 such that





∂ϕ

∂s
(s, x1, x2) + L(x1, x2)ϕ(s, x1, x2) + g(s, x1, x2, v(s, x1, x2)) < −ε0, λ-a.s in Br0

(t̂, x̂)

v(s, x) ≤ ϕ(s, x) + ε0(s− t̂ ), λ-a.s in Br0
(t̂, x̂)

Let A0 ∈ Br0
(t̂, x̂) be a set of positive measure such that (t̂, x̂) ∈ A0. Define

τ = inf
{
s ≥ t̂; (s, X t, x

s ) /∈ A0

}
∧ (t̂+ r0)

The process (Y s, Zs) = ((Y t, x
s∧τ ), 1[0, τ ](s)(Z

t, x
s ))s∈[t̂, t̂+r0]

solves then the BSDE

Y s = vl(τ, X
t, x
τ ) +

∫ t̂+r0

s

1[0, τ ](u)g(u, X
t, x
u , v(u, X t, x

u ))du−
∫ t̂+r0

s

ZudM
Xt, x

u , s ∈ [t̂, t̂+ r0].

On other hand, setting ψ(s, x) = ϕ(s, x) + ε0(s− t̂ ), we have by Itô-Krylov’s formula that

the process (Ŷs, Ẑs) =
(
ψ(s, X t, x

s∧τ ), 1[0, τ ](s)∇ϕ(s, X t, x
s )
)

s∈[t̂, t̂+r0]
solves the BSDE

Ŷs = ψ(τ, X t, x
τ ) −

∫ t̂+r0

s

1[0, τ ](u)[ε0 + (
∂ϕ

∂u
+ Lϕ)(u, X t, x

u )]du−
∫ t̂+r0

s

ẐudM
Xt, x

u .

¿From the choice of τ , (τ, X t, x
τ ) ∈ A0. Therefore v(τ, X t, x

τ ) ≤ ψ(τ, X t, x
τ ) and thanks to the

comparison theorem [20], we deduce that Y t̂ < Ŷt̂, i.e vl(t̂, x̂) < ϕ(t̂, x̂), which contradicts
our hypothesis.

Remark 5.2. (i) Whenever g does not depends on t; v(t, x) = Ỹ x
0 is a Lp-viscosity solution

of the PDE




∂v
∂s

(s, x1, x2) = L(x1, x2)v(s, x1, x2) + g(x1, x2, v(s, x1, x2))

v(0, x1, x2) = H(x1, x2), s > 0, x = (x1, x2) ∈ IRd+1
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where (Xx, Ỹ x
s , Z̃

x
s ; 0 ≤ s ≤ t), solves the following decoupled FBSDE





Xx
s = x+

∫ s

0
b(Xx

u)du+
∫ s

0
σ(Xx

u)dBu, 0 ≤ s ≤ t.

Ỹ x
s = H(Xx

t ) +
∫ t

s
g(Xx

u , Ỹ
x
u )du−

∫ t

s
Z̃x

udM
Xx

u , 0 ≤ s ≤ t

(ii) Since f satisfies (C) and ρ is bounded, one can easily verify that f satisfies (C1).
Therefore, for a fixed positive t, the BSDE with data (H(Xx

t ), f) admit a unique solution
(Y x

s , Z
x
s )0≤s≤t. Moreover, if the function (t, x) ∈ IR+ × IRd+1 7→ v(t, x) = Y x

0 is continuous
and hence, it is a Lp-viscosity solution of the PDE (1.5).

Under assumptions (A), (B), the SDE (3.1) has a unique weak solution [16]. We then
have,

Proposition 5.3. (Continuity in law of the flow x 7→ Xx
. )

Assume (A), (B). Let Xx
s be the unique weak solution of the SDE (3.1), and

Xn
s := xn +

∫ s

0

b(Xn
u )du+

∫ s

0

σ(Xn
u )dBu, 0 ≤ s ≤ t

Assume that xn converges towards x = (x1, x2) ∈ IR1+d. Then, Xn law
=⇒ Xx.

Proof. Since b and σ satisfy (A), (B), one can easily check that the sequence Xn is tight
in C([0, t] × IRd+1). By Prokhorov’s theorem, there exists a subsequence (denoted also by

Xn) which converges weakly to a process X̂. We shall show that X̂ is a weak solution of
SDE (3.1).
• Step 1: For every ϕ ∈ C∞

c (IR1+d),

∀u ∈ [0, t], ϕ(X̂u) −
∫ u

0

Lϕ(X̂v)dv is a F X̂-martingale.

We have need to show that for every ϕ ∈ C∞
c (IR1+d), every 0 ≤ s ≤ u and every function Φs

of (Xxn
r )0≤r<s which is bounded and continuous in the topology of the uniform convergence,

0 = IE

{
[ϕ(Xxn

u ) − ϕ(Xxn

s ) −
∫ u

s

Lϕ(Xxn

v )dv]Φs(X
xn

. )

}

n−→ IE

{
[ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

}

Indeed, since ϕ, Φ are continuous functions and L is continuous out of the set {x1 = 0},
similar argument as that developed in the proof of Lemma 4.7 gives

[ϕ(Xxn

u ) − ϕ(Xxn

s ) −
∫ u

s

Lϕ(Xxn

v )dv]Φs(X
xn

. )
law−→ [ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

Since ϕ, Φ are bounded functions and supn IE(sups∈[0, t] |Xxn|2) <∞, the result follows by the

uniform integrability criterium. Hence, IE

{
[ϕ(X̂u) − ϕ(X̂s) −

∫ u

s

Lϕ(X̂v)dv]Φs(X̂.)

}
= 0

and therefore ϕ(X̂u) − ϕ(X̂s) −
∫ u

s
Lϕ(X̂v)dv is a F X̂-martingale.

•Step 2: From step 1, there exists a F X̂-Brownian motion B̂ such that,

X̂s = x+

∫ s

0

b(X̂u)du+

∫ s

0

σ(X̂u)dB̂u, 0 ≤ s ≤ t.

Weak uniqueness for SDE (3.1) allows us to deduce that Xxn
law
=⇒ Xx.
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Proposition 5.4. Assume (A), (B), (C). Then,

(i) lim
ε→0

Y ε
0 = Y

(t,x)
0 .

(ii) The map (t, x) 7−→ Y t, x
0 is continuous.

(iii) For p > d+ 2, the function v(t, x) := Y t, x
0 is a Lp-viscosity solution to the PDE (1.5).

Proof. (i) Let Y be the limit process defined in Proposition (4.3). Since Y ε
0 and Y0 are

deterministic, it is enough to prove that limε→0 IE(Y ε
0 ) = IE(Y0). We have,





Y ε
0 = H(Xε

t ) +
∫ t

0
f(X

ε

u, X
2, ε
u , Y ε

u )du−Mε
t

Y0 = H(Xt) +
∫ t

0
f(Xu, Yu)du−Mt

¿From Jakubowski [12], the projection: y 7→ yt is continuous in the S-topology. We then
deduce that Y ε

0 converges towards Y0 in distribution. Since Y ε
0 and Y0 are bounded, then

limε→0 IE(Y ε
0 ) = IE(Y 0).

(ii) Let (tn, xn) → (t, x). We assume that t > tn > 0. We have,

Y tn, xn

s = H(Xxn

tn
) +

∫ tn

s

f(Xxn

u , Y tn, xn

u )du−
∫ tn

s

Ztn, xn

u dMXxn

u , 0 ≤ s ≤ tn, (5.1)

where Xxn
law⇒ Xx.

Since H is a bounded continuous function and f satisfies (C1), one can easily show that the
sequence {(Y tn, xn,

∫ .

0
1[s,tn](u)Z

xn
u dMXxn

u )}
n∈IN∗ is tight in D([0, t] × IR × IR).

Let us rewrite the equation (5.1) as follows,

Y tn, xn

s = H(Xxn

tn
) +

∫ t

s

f(Xxn

u , Y tn, xn

u )du−
∫ t

s

1[s,tn](u)Z
tn, xn

u dMXxn

u (5.2)

−
∫ t

tn

f(Xxn

u , Y tn, xn

u )du, 0 ≤ s ≤ t.

= A1
n + A2

n

• Convergence of A2
n

One has IE

∣∣∣∣
∫ t

tn

f(Xxn

u , Y tn, xn

u )du

∣∣∣∣ ≤ K(|x|)|t− tn|. Hence A2
n tends to zero in probability.

• Convergence of A1
n

Denote by (Y ′, M ′) the weak limit of {(Y tn, xn ,
∫ .

0
1[s,tn](u)Z

xn
u dMXxn

u )}
n∈IN∗ . In view of

Lemma 4.7, one has

∫ t

s

f(Xxn

u , Y tn, xn

u )du
law
=⇒

∫ t

s

f(Xx
u , Y

′
u)du.

Passing to the limit in (5.2), we obtain that

Y ′
s = H(Xx

t ) +

∫ t

s

f(Xx
u , Y

′
u)du− (M ′

t −M ′
s), s ∈ [0, t] ∩Dc.

The uniqueness of the considered BSDE ensures that ∀s ∈ [0, t], Y ′
s = Y t, x

s IP-ps. Hence

Y tn, xn
law⇒ Y t, x. As in (i), one derive that Y tn, xn

0
law⇒ Y t, x

0 which yields to the continuity of
Y t, x

0 .
Assertion (iii) follows from Remark 5.2.
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Remark As in KK, we can take W instead of W̃ .

A Appendix: S-topology

The S-topology has been introduced by Jakubowski ([12], 1997) as a topology defined on
the Skorohod space of càdlàg functions: D([0, T ]; IR). This topology is weaker than the
Skorohod topology but tightness criteria are easier to establish. These criteria are the same
as the one used in Meyer-Zheng topology, ([18], 1984).
Let Na, b(z) denotes the number of up-crossing of the function z ∈ D([0, T ]; IR) in a given
level a < b. We recall some facts about the S-topology.

Proposition A.1. (A criteria for S-tight). A sequence (Y ε)ε>0 is S-tight if and only if it is
relatively compact on the S-topology.
Let (Y ε)ε>0 be a family of stochastic processes in D([0, T ]; IR). Then this family is tight for
the S-topology if and only if (‖Y ε‖∞)ε>0 and (Na, b(Y ε))ε>0 are tight for each a < b.

Let (Ω, F , IP, (Ft)t≥0) be a stochastic basis. If (Y )0≤t≤T is a process in D([0, T ]; IR) such
that Yt is integrable for any t, the conditional variation of Y is defined by

CV (Y ) = sup
0≤t1<...<tn=T, partition of [0, T ]

n−1∑

i=1

IE[|IE[Yti+1
− Yti | Fti ]|].

The process is call quasimartingale if CV (Y ) < +∞. When Y is a Ft-martingale, CV (Y ) =
0. A variation of Doob inequality (cf. lemma 3, p.359 in Meyer and Zheng, 1984, where it
is assumed that YT = 0) implies that

IP

[
sup

t∈[0, T ]

|Yt| ≥ k

]
≤ 2

k

(
CV (Y ) + IE

[
sup

t∈[0, T ]

|Yt|
])

,

IE
[
Na, b(Y )

]
≤ 1

b− a

(
|a| + CV (Y ) + IE

[
sup

t∈[0, T ]

|Yt|
])

.

It follows that a sequence (Y ε)ε>0 is S-tight if

sup
ε>0

(
CV (Y ε) + IE

[
sup

t∈[0, T ]

|Y ε
t |
])

< +∞.

Theorem A.2. Let (Y ε)ε>0 be a S-tight family of stochastic process in D([0, T ]; IR). Then
there exists a sequence (εk)k∈IN decreasing to zero, some process Y ∈ D([0, T ]; IR) and a
countable subset D ∈ [0, T ] such that for any n and any (t1, ..., tn) ∈ [0, T ]\D,

(Y εk

t1
, ..., Y εk

tn )
Dist−→ (Yt1 , ..., Ytn)

Remark A.3. The projection :πT y ∈ (D([0, T ]; IR), S) 7→ y(T )is continuous (see Remark
2.4, p.8 in Jakubowski,1997), but y 7→ y(t) is not continuous for each 0 ≤ t ≤ T .

Lemma A.4. Let (Uε, Mε) be a multidimensional process in D([0, T ]; IRp) (p ∈ IN∗) con-
verging to (U, M) in the S-topology. Let (FUε

t )t≥0 (resp. (FU
t )t≥0) be the minimal complete

admissible filtration generated by Uε (resp. U). We assume moreover that. for every T > 0,
supε>0 IE

[
sup0≤t≤T |Mε

t |2
]
< CT .

If Mε is a FUε

-martingale and M is FU -adapted, then M is a FU -martingale.
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Lemma A.5. Let (Y ε)ε>0 be a sequence of process converging weakly in D([0, T ]; IRp) to Y .
We assume that supε>0 IE

[
sup0≤t≤T |Y ε

t |2
]
< +∞. Hence, for any t ≥ 0, E

[
sup0≤t≤T |Yt|2

]
<

+∞.
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[14] Jikov, V. V.; Kozlov, S. M.; Olĕınik, O. A. Homogenization of differential operators and
integral functionals. Translated from the Russian by G. A. Yosifian. Springer, Berlin,
1994.

[15] N. V. Krylov. Controlled Diffusion Processes, (A. B. Aries, translator), Applications of
Mathematics, Vol. 14, Springer-Verlag, New York Berlin, 1980.

[16] Krylov, N. On weak uniqueness for some diffusions with discontinuous coefficients.
Stochastic Processes and their applications, 113, (2004), 37-64.

[17] Lejay, Antoine A probabilistic approach to the homogenization of divergence-form op-
erators in periodic media. Asymptot. Anal. 28 (2001), no. 2, 151–162.

[18] Meyer, P. A., Zheng, W. A. Tightness criteria for laws of semimartingales. Ann. Inst.
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