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We study the asymptotic behavior of solution of semi-linear PDEs. Neither periodicity nor ergodicity will be assumed. In return, we assume that the coefficients admit a limit in Cesaro sense. In such a case, the averaged coefficients could be discontinuous. We use probabilistic approach based on weak convergence for the associated backward stochastic differential equation in the S-topology to derive the averaged PDE. However, since the averaged coefficients are discontinuous, the classical viscosity solution is not defined for the averaged PDE. We then use the notion of "L p -viscosity solution" introduced in [6]. We use BSDEs techniques to establish the existence of L p -viscosity solution for the averaged PDE. We establish weak continuity for the flow of the limit diffusion process and related the PDE limit to the backward stochastic differential equation via the representation of L p -viscosity solution.

Introduction

Homogenization of a partial differential equation (PDE) is the process of replacing rapidly varying coefficients by new ones such that the solutions are close. Example: Let a be a one dimensional periodic function which is uniformly elliptic. For ε > 0, we consider the operator L ε = div(a( x ε )∇)

For small ε, L ε can be replaced by

L = div(a∇)
where a is the averaged (or limit or effective) coefficient associated to a. As ε → 0, solutions of parabolic equations

∂ t u = L ε u, u(0, x) = f (x)
are close to the corresponding solutions with L ε replaced by L.

The probabilistic approach to homogenization gives a good description of this topic in the periodic or ergodic case. It is based on the asymptotic analysis of the diffusion process associated to the operator L ε . The averaged coefficient a is then determined as a certain "mean" of a with respect to the invariant probability measure of the diffusion process associated to L.

There is a vast literature on the homogenization of PDEs with periodic coefficients, see for example monographs [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Freidlin | Functional integration and partial differential equations[END_REF][START_REF] Pankov | G-convergence and homogenization of nonlinear partial differential operators[END_REF] and the references therein. There also exists a considerable literature on the study of asymptotic analysis of stochastic differential equations (SDEs) with periodic structures and its connection with homogenization of second order partial differential equations (PDEs). Actually, coming from relations with semilinear and/or quasilinear PDEs given by a generalized Feynman-Kac formula, forward-backward SDEs (FBSDEs) have also been considered, see among others [START_REF] Buckdahn | Limit theorem for controlled backward SDEs and homogenization of Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Buckdahn | Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs[END_REF][START_REF] Buckdahn | Ying Probabilistic approach to homogenizations of systems of quasilinear parabolic PDEs with periodic structures[END_REF][START_REF] Delarue | François Auxiliary SDEs for homogenization of quasilinear PDEs with periodic coefficients[END_REF][START_REF] Essaky | Averaging of backward stochastic differential equations and homogenization of partial differential equations with periodic coefficients[END_REF][START_REF] Ichihara | A stochastic representation for fully nonlinear PDEs and its application to homogenization[END_REF][START_REF] Lejay | Antoine A probabilistic approach to the homogenization of divergence-form operators in periodic media[END_REF][START_REF] Pardoux | BSDEs, weak convergence and homogenization of semilinear PDEs[END_REF][START_REF] Pardoux | Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: A probabilist approach[END_REF] and the references therein.

In the case where the periodicity and the ergodicity are not assumed, we don't have enough information about the invariant probability measure and hence, the situation is more delicate.

In [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF], Khasminskii & Krylov have considered the averaging of the following family of diffusions process

   x 1, ε t = x 1 + 1 ε t 0 ϕ(x 1, ε s , x 2, ε s )dW s x 2, ε t = x 2 + t 0 b (1) (x 1, ε s , x 2, ε s )ds + t 0 σ (1) (x 1, ε s , x 2, ε s )d W s (1.1)
where x 1, ε t is a null-recurrent fast component and x 2, ε t is a slow component. The function ϕ (resp. σ) is IR-valued (resp. IR d×(k-1) -valued ). (W, W ) is a IR k -dimensional standard Brownian motion which components W is one dimensional while W is IR k-1 -dimensional. They then studied the averaging of system (1.1). They defined the averaged coefficients as a limit in Cesaro sense. With the additional assumption that the presumed SDE limit is weakly unique, they proved that the process (εx 1, ε t , x 2, ε t ) converges in distribution towards a Markov diffusion (X 1 t , X 2 t ). As a byproduct, they derived the limit behavior for the linear PDE associated to (εx 1, ε t , x 2, ε t ), in the case where the weak uniqueness holds in the Sobolev space W 1,2 d+1,loc . In the present note, exploiting the idea of [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF], we study the homogenization of a parabolic semilinear PDE in the case where both the periodicity and the ergodiciy are not be assumed. We define the averaged coefficients as a limits in Cesaro sense. In such a way, the limit coefficients could be discontinuous. More precisely, we consider the following sequence of semi-linear PDEs, indexed by ε > 0,

   ∂v ε ∂s (s, x 1 , x 2 ) = L ε (x 1 , x 2 )v ε (s, x 1 , x 2 ) + f ( x 1 ε , x 2 , v ε (s, x 1 , x 2 )), s ∈ (0, t) v ε (0, x 1 , x 2 ) = H(x 1 , x 2 ) (1.2)
where

L ε (x 1 , x 2 ) = a 00 ( x 1 ε , x 2 ) ∂ 2 ∂ 2 x 1 + d i, j=1 a ij ( x 1 ε , x 2 ) ∂ 2 ∂x 2i ∂x 2j + d i=1 b (1) 
i (

x 1 ε , x 2 ) ∂ ∂x 2i ,
and the real valued measurable functions f and H are defined on IR d+1 × IR and IR d+1 respectively. We put, 1 2 ϕ 2 := a 00 , a ij := 1 2 (σ (1) σ (1) * ) ij , i, j = 1, ..., d, and σ = ϕ 0 0 σ (1) . One has σ ∈ IR (d+1)×k with

       σ 00 = ϕ, σ 0j = 0, j = 1, ..., k -1 σ i0 = 0, i = 1, ..., d σ ij = σ (1) ij , i = 1, ..., d, j = 1, ..., k -1 We denote, X ε := (X 1, ε , X 2, ε ), b = (0, b (1)
) * , and B = (W, W )

The PDE (1.2) is then connected to the Markovian FBSDEs,

     X ε s = x + s 0 b( X 1, ε u ε , X 2, ε u )du + s 0 σ( X 1, ε u ε , X 2, ε u )dB u , Y ε s = H(X ε t ) + t s f ( X 1, ε u ε , X 2, ε u , Y ε u )du - t s Z ε u dM X ε u , ∀ s ∈ [0, t] (1.3) 
where x = (x 1 , x 2 ) and M X ε is a martingale part of the process X ε . It is well known that (under some conditions) the representation v ε (t, x) = Y ε 0 holds. The aim of the present paper is: 1) to show that the sequence of process (

X ε t , Y ε t , t s Z ε u dM X ε u ) 0≤s≤t converges in law to the process (X t , Y t , t s Z u dM X u ) 0≤s≤t which is the unique solution to the FBSDE,    X s = x + s 0 b(X u )du + s 0 σ(X u )dB u , 0 ≤ s ≤ t. Y s = H(X t ) + t s f (X u , Y u )du - t s Z u dM X u , 0 ≤ s ≤ t (1.4)
where σ, b and f are respectively the average of σ, b and f .

2) As a consequence, we establish that v ε tends towards v, which solves the following averaged equation in the L p -viscosity sense.

   ∂v ∂s (s, x 1 , x 2 ) = L(x 1 , x 2 )v(s, x 1 , x 2 ) + f(x 1 , x 2 , v(s, x 1 , x 2 )) 0 < s ≤ t v(0, x 1 , x 2 ) = H(x 1 , x 2 ) (1.5) where L(x 1 , x 2 ) = i, j a ij (x 1 , x 2 ) ∂ 2 ∂x i ∂x j + i b i (x 1 , x 2 ) ∂ ∂x i
, is the averaged operator.

The method used to derive the averaged BSDE is based on weak convergence in the Stopology and is close to that used in [START_REF] Pardoux | BSDEs, weak convergence and homogenization of semilinear PDEs[END_REF]. In our framework, we show that the limit FBSDE (1.4) has a unique solution. However, due to the discontinuity of the coefficients, the classical viscosity solution is not defined for the averaged PDE (1.5). We then use the notion of "L p -viscosity solution". We use BSDEs techniques to establish the existence of L p -viscosity solution for the averaged PDE. The notion of L p -viscosity solution has been introduced by Cafarelli et al. in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] to study fully nonlinear PDEs with measurable coefficients. However, even if the notion of L p -viscosity solution is available for PDEs with merely measurable coefficients, one require continuity property for such solutions. In our case, the lack of L 2continuity property for the flow X x := (X 1, x , X 2, x ) transfer the difficulty to the backward one and hence we cannot prove the L 2 -continuity of the process Y . To overcome this difficulty, we establish weak continuity for the flow x → (X 1, x , X 2, x ) and use the fact that Y x 0 is deterministic, to derive the continuity property for Y x 0 . The paper is organized as follows: In section 2, we make some notations and assumptions. Our main results are stated in section 3. Section 4 and 5 are devoted to the proofs.

Notations and assumptions 2.1 Notations

For a given function g(x 1 , x 2 ), we define

g + (x 2 ) := lim x 1 →+∞ 1 x 1 x 1 0 g(t, x 2 )dt g -(x 2 ) := lim x 1 →-∞ 1 x 1 x 1 0 g(t, x 2 )dt
The limit in Cesaro of g is defined by,

g ± (x 1 , x 2 ) := g + (x 2 )1 {x 1 >0} + g -(x 2 )1 {x 1 ≤0} Let ρ(x 1 , x 2 ) := a 00 (x 1 , x 2 ) -1 (= [ 1 2 ϕ 2 (x 1 , x 2 )] -1
) and denote by b(x 1 , x 2 ), a(x 1 , x 2 ) and f (x 1 , x 2 , y), the averaged coefficients defined as follows,

b i (x 1 , x 2 ) = (ρb i ) ± (x 1 , x 2 ) ρ ± (x 1 , x 2 ) , i = 1, ..., d a ij (x 1 , x 2 ) = (ρa ij ) ± (x 1 , x 2 ) ρ ± (x 1 , x 2 ) , i, j = 0, 1, ..., d f (x 1 , x 2 , y) = (ρf ) ± (x 1 , x 2 , y) ρ ± (x 1 , x 2 ) ,
It's worth noting that b, a and f may be discontinuous at x 1 = 0.

Assumptions.

We consider the following conditions, (A1) The function b (1) , σ (1) , ϕ are uniformly Lipschitz in the variables (x 1 , x 2 ), (A2) for each x 1 , their derivative in x 2 up to and including second order derivatives are bounded continuous functions of x 2 .

(A3) a := (σ (1) σ (1) * ) is uniformly elliptic, i.e: ∃Λ > 0; ∀x, ξ ∈ IR d , ξ * a(x)ξ ≥ Λ|ξ| 2 . Moreover, there exist positive constants

C 1 , C 2 , C 3 such that    (i) C 1 ≤ a 00 (x 1 , x 2 ) ≤ C 2 (ii) |a(x 1 , x 2 )| + |b(x 1 , x 2 )| 2 ≤ C 3 (1 + |x 2 | 2 ) (B1) Let D x 2 u and D 2
x 2 u denote respectively the gradient vector and the matrix of second derivatives of u with respect to x 2 . The following limits are uniform in x 2 ,

1 x 1 x 1 0 ρ(t, x 2 )dt -→ ρ ± (x 2 ) as x 1 → ±∞ 1 x 1 x 1 0 D x 2 ρ(t, x 2 )dt -→ D x 2 ρ ± (x 2 ) as x 1 → ±∞ 1 x 1 x 1 0 D 2 x 2 ρ(t, x 2 )dt -→ D 2 x 2 ρ ± (x 2 ) as x 1 → ±∞ (B2)
For every i and j, the coefficients ρb i , D

x 2 (ρb i ), D 2 x 2 (ρb i ), ρa ij , D x 2 (ρa ij ), D 2 
x 2 (ρa ij ) have limits in Cesaro sense.

(B3) For every function k ∈ {ρ, ρb i , D x 2 (ρb i ), D 2 x 2 (ρb i ), ρa ij , D x 2 (ρa ij ), D 2 x 2 (ρa ij )}, there exists a bounded function α such that        1 x 1 x 1 0 k(t, x 2 )dt -k ± (x 1 , x 2 ) = (1 + |x 2 | 2 )α(x 1 , x 2 ), lim |x 1 |-→∞ sup x 2 ∈IR d |α(x 1 , x 2 )| = 0. (2.1) (C1) (i) For every (x 1 , x 2 ) ∈ IR d+1 , f (x 1 , x 2 , •) ∈ C 2 b (IR), the bounds being uniform in (x 1 , x 2 ).
(ii) H is continuous and bounded.

(C2) ρf has a limit in Cesaro sense and there exists a bounded measurable function

β such that        1 x 1 x 2 0 ρ(t, x 2 )f (t, x 2 , y)dt -(ρf ) ± (x 1 , x 2 , y) = (1 + |x 2 | 2 + |y| 2 )β(x 1 , x 2 , y) lim |x 1 |→∞ sup (x 2 , y)∈IR d ×IR |β(x 1 , x 2 , y)| = 0, (2.2) 
(C3) For each x 1 , ρf has derivatives up to second order in (x 2 , y) and these derivatives are bounded and satisfy (C2).

Throughout the paper, (A) stands for conditions (A1), (A2), (A3); (B) for conditions (B1), (B2), (B3) and (C) for (C1), (C2), (C3).

3 The main result.

Consider the equation

X t, x s = x + s t b(X t, x u )du + s t σ(X t, x u )dB u , t ≤ s ≤ T (3.1)
Assume that (A), (B) hold. Then,

• From Khasminskii and Krylov [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF] we have: the process X ε := (X 1, ε , X 2, ε ) converges in distribution to the process X := (X 1 , X 2 ). and

• From Krylov [START_REF] Krylov | On weak uniqueness for some diffusions with discontinuous coefficients[END_REF] we have: The limit X = (X 1 , X 2 ) is a unique weak solution to SDE (3.1).

We now define the L p -viscosity solution. This notion has been introduced by Caffarelli et al. in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] to study PDEs with measurable coefficients. Wide presentation of this topic can be found in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF][START_REF] Crandall | Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations[END_REF]. Let g : [0, T ] × IR d+1 × IR -→ IR be a measurable function and

L(x 1 , x 2 ) := i, j a ij (x 1 , x 2 ) ∂ 2 ∂x i ∂x j + i b i (x 1 , x 2 ) ∂ ∂x i
be the operator associated to the solution to SDE (3.1). We consider the parabolic equation,

   ∂v ∂s (s, x 1 , x 2 ) + L(x 1 , x 2 )v(s, x 1 , x 2 ) + g(s, x 1 , x 2 , v(s, x 1 , x 2 )) = 0, t ≤ s < T v(T, x 1 , x 2 ) = H(x 1 , x 2 ). (3.2) Definition 3.1. Let p be an integer such that p > d + 2. (a)-A function v ∈ C [0, T ] × IR d+1 , IR is a L p -viscosity sub-solution of the PDE (3.2), if for every x ∈ IR d+1 , v(T, x) ≤ H(x) and for every ϕ ∈ W 1, 2 p, loc [0, T ] × IR d+1 , IR and ( t, x) ∈ [0, T ] × IR d+1 at which v -ϕ has a local maximum, one has ess lim (s, x)→( t, x) inf - ∂ϕ ∂s (s, x 1 , x 2 ) -G(s, x, ϕ(s, x)) ≤ 0. (b)-A function v ∈ C [0, T ] × IR d+1 , IR is a L p -viscosity super-solution of the PDE (3.2), if for every x ∈ IR d+1 , v(T, x) ≥ H(x) and for every ϕ ∈ W 1, 2 p, loc [0, T ] × IR d+1 , IR and ( t, x) ∈ [0, T ] × IR d+1 at which v -ϕ has a local minimum, one has ess lim (s, x)→( t, x) sup - ∂ϕ ∂s (s, x 1 , x 2 ) -G(s, x, ϕ(s, x)) ≥ 0.
Here, G(s, x, ϕ(s, x)

) = L(x 1 , x 2 )ϕ(s, x 1 , x 2 ) + g(s, x 1 , x 2 , v(s, x 1 , x 2 )
) is assumed to be merely measurable on the variable

x = (x 1 , x 2 ). (c)-A function v ∈ C [0, T ] × IR d+1
, IR is a L p -viscosity solution if it is both a L pviscosity sub-solution and super-solution.

Remark 3.2. The definition (a) means that for every ε > 0, r > 0, there exists a set A ⊂ B r ( t, x) of positive measure such that, ∀ (s, x) ∈ A,

- ∂ϕ ∂s (s, x 1 , x 2 ) -L(x 1 , x 2 )ϕ(s, x 1 , x 2 ) -g(s, x 1 , x 2 , v(s, x 1 , x 2 )) ≤ ε.
The main result is,

Theorem 3.3. Assume (A), (B), (C). Then, the sequence of process (X ε t , Y ε t , t s Z ε u dM X ε u ) converges in law to the process (X t , Y t , t s Z u dM X u )
which is the unique solution to FBSDE (1.4). Theorem 3.4. Assume (A), (B), (C). For ε > 0, let v ε be the unique solution to the problem (1.2). Let (Y (t,x) s

) s be the unique solution of BSDE (1.4). Then,

(i) Equation (1.5) has a unique L p -viscosity solution v such that v(t, x) = Y (t,x) 0 . (ii) for every (t, x), v ε (t, x) converges to v(t, x).
Remark 3.5. 1) The conclusion of Theorem 3.3 remains valid if we take the forward component of our FBSDE (1.3) as that of [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF] and replace the Brownian motion B by W . The dimensions and the assumptions should be accordingly rearranged. For instance, in place equation (1.3), we consider the FBSDE,

     X ε s = x + s 0 b( X 1, ε u ε , X 2, ε u )du + s 0 σ( X 1, ε u ε , X 2, ε u )dW u , Y ε s = H(X ε t ) + t s f ( X 1, ε u ε , X 2, ε u , Y ε u )du - t s Z ε u dM X ε u , ∀ s ∈ [0, t] (3.3) 
where

x = (x 1 , x 2 ) and      X 1, ε t = x 1 + t 0 ϕ( X 1, ε s ε , X 2, ε s )dW s X 2, ε t = x 2 + t 0 b (1) ( X 1, ε s ε , X 2, ε s )ds + t 0 σ (1) ( X 1, ε s ε , X 2, ε s )dW s (3.4)
In this case: ϕ is a IR k -valued function, W is an IR k -Brownian motion and σ (1) = (σ

(1) ij ) is a d × k matrix. The nondegeneracy condition A3)-i) imposed on ϕ should be replaced by, C 1 ≤ k i=1 ϕ i (x 1 , x 2 ) ≤ C 2 .
The infinitesimal generator L associated to the diffusion component will be more complicated since it takes account on other (mixed) second order derivatives.

2) If in Theorem 3.3, we replace the initial condition of the forward component in equation (1.3) by (εx 1 , x 2 ), then we obtain the same limit with initial condition (0, x 2 ) instead of (x 1 , x 2 ). 

sup ε IE sup 0≤s≤t |Y ε s | 2 + t 0 |Z ε s | 2 d M X ε s ≤ C.
Proof. Throughout this proof, K, C are positive constants which depends only on (s, t) and may change from line to line. It is easy to check that for all k ≥ 1,

sup ε IE sup 0≤s≤t |X 1, ε s | 2k + |X 2, ε s | 2k < +∞. (4.1)
Using Itô's formula, we get:

|Y ε s | 2 + t s |Z ε u | 2 d M X ε u ≤ |H(X ε t )| 2 + K t s |Y ε u | 2 du + t s |f (X 1, ε u , X 2, ε u , 0)| 2 du -2 t s Y ε u , Z ε u dM X ε s .
Passing to expectation, it is then follows by using Gronwall's lemma that, there exists a positive constant C which does not depend on ε such that,

IE |Y ε s | 2 ≤ CIE |H(X ε t )| 2 + t 0 |f (X 1, ε u , X 2, ε u , 0)| 2 du , ∀s ∈ [0, t]
We deduce that

IE t s |Z ε u | 2 d M X ε u ≤ CIE |H(X ε t )| 2 + t 0 |f (X 1, ε u , X 2, ε u , 0)| 2 du (4.2)
Combining (4.2) and the Burkhölder-Davis-Gundy inequality, we get

IE sup 0≤s≤t |Y ε t | 2 + 1 2 t 0 |Z ε u | 2 d M X ε u ≤ CIE |H(X ε t )| 2 + t 0 |f (X 1, ε u , X 2, ε u , 0)| 2 du
In view of condition (C1 -iii) and (4.1), the proof is complete.

Proposition 4.2. For ε > 0, let Y ε be the process defined by equation 1.3 and M ε ) be its martingale part. The sequence (Y ε , M ε ) ε>0 is tight on the space D ([0, t], IR) × D ([0, t], IR) endowed with the S-topology.

Proof. Since M ε is a martingale, then by [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF] or [START_REF] Jakubowski | A non-Skorohod topology on the Skorohod space[END_REF], the Meyer-Zheng tightness criteria is fulfilled whenever

sup ε CV (Y ε ) + IE sup 0≤s≤t |Y ε t | + |M ε t | < +∞. (4.3)
where the conditional variation CV is defined in appendix A. By [START_REF] Pardoux | Averaging of backward SDEs with application to semilinear PDEs[END_REF], the conditional expectation CV (Y ε ) satisfies

CV (Y ε ) ≤ KIE t 0 |f (X 1, ε s , X 2, ε s , Y ε s )| 2 ds ,
where K is a constant which only depends on t.

Combining condition (C1 ) and Proposition 4.1, we deduce (4.3).

Proposition 4.3.

There exists (Y, M) and a countable subset D of [0, t] such that along a subsequence of ε,

(i) (Y ε , M ε ) law =⇒ (Y, M) on D ([0, t], IR) × D ([0, t]
, IR) endowed with the S-topology. (ii)-Thanks to Theorem 3.1 in Jakubowski [START_REF] Jakubowski | A non-Skorohod topology on the Skorohod space[END_REF], there exists a countable set D such that along a subsequence the convergence in law holds. Moreover, the convergence in finitedistribution holds on D c . 4.2 Identification of the limit finite variation process. Proposition 4.4. Let (Y, M), the limit process defined in Proposition 4.3. Then,

(ii) (Y ε , M ε ) -→ (Y, M) in finite-distribution on D c . (iii) (X 1,ε , X 2,ε , Y ε ) ⇒ (X 1 , X 2 , Y ) ,
(i) For every s ∈ [0, t] -D,    Y s = H(X t ) + t s f (X 1 u , X 2 u , Y )du -(M t -M s ), IE sup 0≤s≤t |Y s | 2 + |X 1 s | 2 + |X 2 s | 2 ≤ C. (4.4) 
(ii) M is a F s -martingale, where F s := σ{X u , Y u , 0 ≤ u ≤ s} augmented with the IP-null sets.

To prove this proposition, we need the following lemmas.

Lemma 4.5. Assume (A), (B), (C2) and (C3). For y ∈ IR, let V ε (x 1 , x 2 , y) denote the solution of the following equation:

   a 00 ( x 1 ε , x 2 )D 2 x 1 u(x 1 , x 2 , y) = f ( x 1 ε , x 2 , y) -f (x 1 , x 2 , y) u(0, x 2 ) = D x 1 u(0, x 2 ) = 0. (4.5)
Then, (i)

D x 1 V ε (x 1 , x 2 , y) = x 1 (1 + |x 2 | 2 + |y| 2 )β( x 1 ε , x 2 , y) -x 1 (1 + |x 2 | 2 )m( x 1 ε , x 2 , y), (ii) for any K ε (x 1 , x 2 , y) ∈ V ε , D x 2 V ε , D 2 x 2 V ε , D x 1 D x 2 V ε , D y V ε , D 2 y V ε , D x 1 D y V ε , D x 2 D y V ε it holds, K ε (x 1 , x 2 , y) = x 2 1 (1 + |x 2 | 2 + |y| 2 )β( x 1 ε , x 2 , y) + x 2 1 (1 + |x 2 | 2 )m( x 1 ε , x 2 , y)
where m( x 1 ε , x 2 , y) := (ρf ) ± (x 1 , x 2 , y) ρ ± (x 1 , x 2 ) α( x 1 ε , x 2 ) and α(x 1 , x 2 ), β(x 1 , x 2 , y) are various bounded functions which satisfy property (2.1)and (2.2) respectively.

Proof. We will adapt the idea of [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF] to our situation. For a fixed y, we set

F ( x 1 ε , x 2 , y) := 1 x 1 x 1 0 ρ( t ε , x 2 )g( t ε , x 2 , y)dt where g( x 1 ε , x 2 , y) := f ( x 1 ε , x 2 , y) -f (x 1 , x 2 , y). For x 1 > 0, we have F ( x 1 ε , x 2 , y) = 1 x 1 x 1 0 ρ( t ε , x 2 )f ( t ε , x 2 , y)dt -(ρf ) + (x 2 , y) + (ρf ) + (x 2 , y) - (ρf ) + (x 2 , y) ρ + (x 2 ) 1 x 1 x 1 0 ρ( t ε , x 2 )dt = (1 + |x 2 | 2 + |y| 2 )β 1 ( x 1 ε , x 2 , y) + (ρf ) + (x 2 , y) 1 - 1 ρ + (x 2 )x 1 x 1 0 ρ( t ε , x 2 )dt = (1 + |x 2 | 2 + |y| 2 )β 1 ( x 1 ε , x 2 , y) -(1 + |x 2 | 2 ) (ρf ) + (x 2 , y) ρ + (x 2 ) α 1 ( x 1 ε , x 2 ) Since, D x 1 V ε (x 1 , x 2 , y) = x 1 F ( x 1 ε , x 2 , y), we derive the result for D x 1 V ε (x 1 , x 2 , y).
Further, by integrating, we get

V ε (x 1 , x 2 , y) = x 2 1 (1 + |x 2 | 2 + |y| 2 ) ( ε x 1 ) 2 x 1 ε 0 tβ 1 (t, x 2 , y)dt -(1 + |x 2 | 2 ) (ρf ) + (x 2 , y) ρ + (x 2 ) ( ε x 1 ) 2 x 1 ε 0 tα 1 (t, x 2 )dt Clearly, β( x 1 ε , x 2 , y) := ( ε x 1 ) 2 x 1 ε 0 tβ 1 (t, x 2 , y)dt, α( x 1 ε , x 2 ) = ( ε x 1 ) 2
x 1 ε 0 tα(t, x 2 )dt satisfy (2.1) and (2.2) respectively. The same argument can be used in the case x 1 < 0. The result for

D x 2 V ε (x 1 , x 2 , y), D 2 x 2 V ε (x 1 , x 2 , y) and D x 1 D x 2 V ε (x 1 ,
x 2 , y) can obtained by using similar arguments. Lemma 4.6.

sup 0≤s≤t s 0 f ( X 1, ε u ε , X 2, ε u , Y ε u ) -f (X 1, ε u , X 2, ε u , Y ε u ) du tends to zero in probability as ε -→ 0.
Proof. Let V ε denote the solution of equation (4.5). Note that V ε has first and second derivatives in (x 1 , x 2 , y) which are possibly discontinuous only at x 1 = 0. Then, as in [START_REF] Khasminskii | On averaging principle for diffusion processes with nullrecurrent fast component[END_REF], since ϕ is non degenerate, we can use Itô-Krylov formula to get

V ε (X 1, ε s , X 2, ε s , Y ε s ) = V ε (x 1 , x 2 , Y ε 0 ) + s 0 f ( X 1, ε u ε , X 2, ε u , Y ε u ) -f (X 1, ε u , X 2, ε u , Y ε u ) du + s 0 a ij (X 1, ε u , X 2, ε u ) ∂ 2 V ε ∂x 2i ∂x 2j (X 1, ε u , X 2, ε u , Y ε u )du + s 0 b (1) j (X 1, ε u , X 2, ε u ) ∂V ε ∂x 2j (X 1, ε u , X 2, ε u , Y ε u )du + s 0 [ ∂V ε ∂x 1 (X 1, ε u , X 2, ε u , Y ε u )ϕ(X 1, ε u , X 2, ε u )dW u + ∂V ε ∂x 2 (X 1, ε u , X 2, ε u , Y ε u )σ (1) (X 1, ε u , X 2, ε u )d W u ] - s 0 ∂V ε ∂y (X 1,ε u , X 2,ε u , Y ε u )f ( X 1,ε u ε , X 2,ε u , Y ε u )du + s 0 ∂V ε ∂y (X 1,ε u , X 2,ε u , Y ε u )Z ε u σ( X 1,ε u ε , X 2,ε u )dB u + 1 2 s 0 ∂ 2 V ε ∂y∂y (X 1,ε u , X 2,ε u , Y ε u )Z ε u σσ * ( X 1,ε u ε , X 2,ε u )(Z ε u ) * du (4.6) + 1 2 s 0 ∂ 2 V ε ∂y∂x (X 1,ε u , X 2,ε u , Y ε u )σσ * ( X 1,ε u ε , X 2,ε u )(Z ε u ) * du.
In view of Lemma 4.5, it is obvious to see that V ε (x 1 , x 2 , Y ε 0 ) tends to zero. Once again, from Lemma 4.5, we have

V ε (X 1, ε s , X 2, ε s , Y ε s ) ≤ ε (1 + |X 2, ε s | 2 + |Y ε s | 2 )|β( X 1, ε s ε , X 2, ε s , Y ε s )| + ε (1 + |X 2, ε s | 2 ) (ρf ) ± (X 2, ε s , Y ε s ) ρ ± (X 2, ε s ) |α( X 1, ε s ε , X 2, ε s )| + 1 {|X 1, ε s |≥ √ ε} |X 1, ε s | 2 (1 + |X 2, ε s | 2 + |Y ε s | 2 )|β( X 1, ε s ε , X 2, ε s , Y ε s , Z ε, n s ) + 1 {|X 1, ε s |≥ √ ε} |X 1, ε s | 2 (1 + |X 2, ε s | 2 ) (ρf ) ± (X 2, ε s , Y ε s ) ρ ± (X 2, ε s ) |α( X 1, ε s ε , X 2, ε s )|
From the estimates of the processes X 1, ε s , X 2, ε s , Y ε s and the fact that (ρf ) ± satisfies conditions (C), we deduce that

IE sup 0≤s≤t |V ε, n (X 1, ε s , X 2, ε s , Y ε s )| ≤ K ε + sup |x 1 |≥ √ ε sup (x 2 , y) |β( x 1 ε , x 2 , y)| + sup |x 1 |≥ √ ε sup x 2 |α( x 1 ε , x 2 )|
Then, since α and β satisfy (2.1) and (2.2) respectively, the right hand side of the previous inequality tends to zero as ε -→ 0. Similarly, one can show that

+ s 0 a ij (X 1, ε u , X 2, ε u ) ∂ 2 V ε ∂x 2i ∂x 2j (X 1, ε u , X 2, ε u , Y ε u )du + s 0 b (1) j (X 1, ε u , X 2, ε u ) ∂V ε ∂x 2j (X 1, ε u , X 2, ε u , Y ε u )du + s 0 [ ∂V ε ∂x 1 (X 1, ε u , X 2, ε u , Y ε u )ϕ(X 1, ε u , X 2, ε u )dW u + ∂V ε ∂x 2 (X 1, ε u , X 2, ε u , Y ε u )σ (1) (X 1, ε u , X 2, ε u )d W u ] - s 0 ∂V ε ∂y (X 1,ε u , X 2,ε u , Y ε u )f ( X 1,ε u ε , X 2,ε u , Y ε u )du + s 0 ∂V ε ∂y (X 1,ε u , X 2,ε u , Y ε u )Z ε u σ( X 1,ε u ε , X 2,ε u )dB u + 1 2 s 0 ∂ 2 V ε ∂y∂y (X 1,ε u , X 2,ε u , Y ε u )Z ε u σσ * ( X 1,ε u ε , X 2,ε u )(Z ε u ) * du + 1 2 s 0 ∂ 2 V ε ∂y∂x (X 1,ε u , X 2,ε u , Y ε u )σσ * ( X 1,ε u ε , X 2,ε u )(Z ε u ) * du
converge to zero in probability. Let us give an explanation concerning the one but last term, which is the most delicate one.

s 0 ∂ 2 V ε ∂y∂y (X 1,ε u , X 2,ε u , Y ε u )Z ε u σσ * ( X 1,ε u ε , X 2,ε u )(Z ε u ) * du ≤ C sup 0≤u≤s (1 + |X 2,ε u | 2 ) ∂ 2 V ε ∂y∂y (X 1,ε u , X 2,ε u , Y ε u ) s 0 |Z ε u | 2 du Since { s 0 |Z ε u | 2 du, 0 ≤ s ≤ t}
is the increasing process associated to a bounded martingale, so the L p (IP) norm of

t 0 |Z ε u | 2 du is bounded, for all p ≥ 1. Moreover sup 0≤u≤t (1 + |X 2,ε u | 2
) is also bounded in all L p (IP) spaces. Finally the same argument as above shows that sup 0≤u≤s

∂ 2 V ε ∂y∂y (X 1,ε u , X 2,ε u , Y ε u ) → 0 in probability, as ε → 0. Lemma 4.7. . 0 f (X 1, ε u , X 2, ε u , Y ε u )du law =⇒ . 0 f (X 1 u , X 2 u , Y u )du on C([0, t], IR) as ε -→ 0.
For the proof of this Lemma, we need the following two results.

Lemma 4.8. Let X 1 s := x 1 + s 0 ϕ(X 1 u , X 2 u )dW u , 0 ≤ s ≤ t,
and, assume (A2-i), (B1).

For ε > 0, let D ε n := s : s ∈ [0, t] / X 1,ε s ∈ B(0, 1 n ) .
Define also

D n := s : s ∈ [0, t] / X 1 s ∈ B(0, 1 n ) .
Then, there exists a constant c > 0 such that for each n ≥ 1, ε > 0,

IE|D ε n | ≤ c n and IE|D n | ≤ c n ,
where |. | denotes the Lebesgue measure.

Proof. Consider the sequence (Ψ n ) of functions defined as follows,

Ψ n (x) =            -x/n -1/2n 2 if x ≤ -1/n x 2 /2 if -1/n ≤ x ≤ 1/n x/n -1/2n 2 if x ≥ 1/n
We put, ϕ := a 00 := ρ(x 1 , x 2 ) -1 .

Using Itô's formula, we get

Ψ n (X 1 s ) = Ψ n (X 1 0 ) + s 0 Ψ ′ n (X 1 s )ϕ(X 1 s , X 2 s )dW s + 1 2 s 0 Ψ " n (X 1 s )ϕ 2 (X 1 s , X 2 s )ds, s ∈ [0, t]
Since ϕ is lower bounded by C 1 , taking the expectation, we get

C 1 IE t 0 1 [-1 n , 1 n ] (X 1 s )ds ≤ IE t 0 Ψ " n (X 1 s )ϕ 2 (X 1 s , X 2 s )ds = 2IE Ψ n (X 1 t ) -Ψ n (x 1 ) It follows that IE(|D n |) ≤ 2C -1 1 IE [Ψ n (X 1 t ) -Ψ n (x 1 )] ≤ c/n.
The same argument, applies to D ε n , allows us to show the first estimate.

Lemma 4.9. Consider a collection {Z ε , ε > 0} of real valued random variables, and a real valued random variable Z. Assume that for each n ≥ 1, we have the decompositions

Z ε = Z 1,ε n + Z 2,ε n Z = Z 1 n + Z 2 n ,
such that for each fixed n ≥ 1,

Z 1,ε n ⇒ Z 1 n IE|Z 2,ε n | ≤ c √ n IE|Z 2 n | ≤ c √ n .
Then Z ε ⇒ Z, as ε → 0.

Proof. The above assumptions imply that the collection of random variables {Z ε , ε > 0} is tight. Hence the result will follow from the fact that

IEΦ(Z ε ) → IEΦ(Z), as ε → 0 for all Φ ∈ C b (IR)
which is uniformly Lipschitz. Let Φ be such a function, and denote by K its Lipschitz constant. Then

|IEΦ(Z ε ) -IEΦ(Z)| ≤ IE|Φ(Z ε ) -Φ(Z 1,ε n )| + +|IEΦ(Z 1,ε n ) -IEΦ(Z 1 n )| + IE|Φ(Z 1 n ) -Φ(Z)| ≤ |IEΦ(Z 1,ε n ) -IEΦ(Z 1 n )| + 2K c √ n . Hence lim sup ε→0 |IEΦ(Z ε ) -IEΦ(Z)| ≤ 2K c √ n ,
for all n ≥ 1. The result follows.

Proof of Lemma 4.7. For each n ≥ 1, define a function θ n ∈ C(IR, [0, 1]) such that θ n (x) = 0 for |x| ≤ 1/(2n), and θ n (x) = 1 for |x| ≥ 1/n. We have

t 0 f (X 1,ε s , X 2,ε s , Y ε s )ds = t 0 f (X 1,ε s , X 2,ε s , Y ε s )θ n (X 1,ε s )ds + t 0 f(X 1,ε s , X 2,ε s , Y ε s )[1 -θ n (X 1,ε s )]ds = Z 1,ε n + Z 2,ε n t 0 f (X 1 s , X 2 s , Y s )ds = t 0 f (X 1 s , X 2 s , Y s )θ n (X 1 s )ds + t 0 f (X 1 s , X 2 s , Y s )[1 -θ n (X 1 s )]ds = Z 1 n + Z 2 n
Note that the mapping

(x 1 , x 2 , y) → t 0 f(x 1 s , x 2 s , y s )θ n (x 1 s )ds is continuous from C([0, t]) × D([0, t]
) equipped with the product of the sup-norm and the S topologies into IR. Hence, from Proposition 4.3,

Z 1,ε n ⇒ Z 1 n as ε → 0, for each fixed n ≥ 1.
Moreover, from Lemma 4.8, the linear growth property of f , Proposition 4.1 and (4.1), we deduce that

E|Z 2,ε n | ≤ c √ n , E|Z 2 n | ≤ c √ n .
Lemma 4.7 now follows from Lemma 4.9.

Proof of Proposition 4.4 Passing to the limit in the backward component of the equation (1.3) and using Lemmas 4.6 and 4.7, we derive assertion (i). Assertion (ii) can be proved by using the same arguments that developed in [START_REF] Pardoux | Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: A probabilist approach[END_REF] section 6.

4.3 Identification of the limit martingale.

Proposition 4.10. Let ( Ȳs , Zs , 0 ≤ s ≤ t) be the unique solution to BSDE (H(X t ), f ).

Then, for every s ∈ [0, t],

IE|Y s -Ȳs | 2 + IE [M - . 0 Zu dM X u ] t -[M - . 0 Zu dM X u ] s = 0. Proof. For every s ∈ [0, t] -D, we have    Y s = H(X t ) + t s f (X u , Y u )du -(M t -M s ) Ȳs = H(X t ) + t s f (X u , Ȳu )du - t s Zu dM X u
Arguing as in [START_REF] Pardoux | Homogenization of linear and semilinear second order parabolic PDEs with periodic coefficients: A probabilist approach[END_REF], we show that M := .

s Zu dM X u is a F s -martingale. Since f satisfies condition (C1), we get by Itô's formula, that

IE|Y s -Y s | 2 + IE [M - . 0 Zu dM X u ] t -[M - . 0 Zu dM X u ] s ≤ CIE t s |Y u -Y u | 2 du.
Therefore, Gronwall's lemma yields that IE|Y s - Since, under assumptions (A1) and (A2), the SDE (3.1) is weakly unique, the martingale problem associated to X = (X 1 , X 2 ) is well posed. We then have the following:

Y s | 2 = 0, ∀s ∈ [0, t] -D. But, Ȳ is continuous, Y is càd-lag,
Proposition 5.1. Assume that g satisfies (C1). Then, (i) For a fixed positive number T , the BSDE

Y t, x s = H(X t, x T ) + T s g(u, X t, x u , Y t, x u )du - T s Z t, x u dM X t, x u , t ≤ s ≤ T.
admits a unique solution (Y t, x s , Z t, x s ) t≤s≤T such that the component (Y t, x s ) t≤s≤T is bounded. (ii) If moreover, the function (t, x) ∈ [0, T ] × IR d+1 -→ v(t, x) := Y t, x t is continuous, then it is a L p -viscosity solution of the PDE (3.2).

Proof. (i) Thanks to Remark 3.5 of [START_REF] Pardoux | BSDEs, weak convergence and homogenization of semilinear PDEs[END_REF], it is enough to prove existence and uniqueness for the BSDE,

Y t, x s = H(X t, x T ) + T s g(u, X t, x u , Y t, x u )du - T s Z t, x u dB u , t ≤ s ≤ T.
But, this can be proved by usual arguments of BSDEs. For instance, it's obvious that uniqueness holds under (C1), and, we can prove the existence of the solution by using a Picard type approximation.

(ii) We only prove that v is L p -viscosity sub-solution. The proof for super-solution can be performed similarly. For ϕ ∈ W 1, 2 p, loc [0, T ] × IR d+1 , IR , let ( t, x) ∈ [0, T ] × IR d+1 be a point which is a local maximum of v -ϕ. Since p > d + 2, then ϕ has a continuous version which we consider bellow. We assume without loss of generality that v( t, x) = ϕ( t, x). Following Cafarelli et al., assume that there exists ε 0 , r 0 > 0 such that

   ∂ϕ ∂s (s, x 1 , x 2 ) + L(x 1 , x 2 )ϕ(s, x 1 , x 2 ) + g(s, x 1 , x 2 , v(s, x 1 , x 2 )) < -ε 0 , λ-a.s in B r 0 ( t, x) v(s, x) ≤ ϕ(s, x) + ε 0 (s -t ), λ-a.s in B r 0 ( t, x)
Let A 0 ∈ B r 0 ( t, x) be a set of positive measure such that ( t, x) ∈ A 0 . Define

τ = inf s ≥ t; (s, X t, x s ) / ∈ A 0 ∧ ( t + r 0 )
The process (Y s , Z s ) = ((Y t, x s∧τ ),

1 [0, τ ] (s)(Z t, x s )) s∈[ t, t+r 0 ] solves then the BSDE Y s = v l (τ, X t, x τ ) + t+r 0 s 1 [0, τ ] (u)g(u, X t, x u , v(u, X t, x u ))du - t+r 0 s Z u dM X t, x u , s ∈ [ t, t + r 0 ].
On other hand, setting ψ(s, x) = ϕ(s, x) + ε 0 (s -t ), we have by Itô-Krylov's formula that the process (

Y s , Z s ) = ψ(s, X t, x s∧τ ), 1 [0, τ ] (s)∇ϕ(s, X t, x s ) s∈[ t, t+r 0 ] solves the BSDE Y s = ψ(τ, X t, x τ ) - t+r 0 s 1 [0, τ ] (u)[ε 0 + ( ∂ϕ ∂u + Lϕ)(u, X t, x u )]du - t+r 0 s Z u dM X t, x u .
¿From the choice of τ , (τ, X t, x τ ) ∈ A 0 . Therefore v(τ, X t, x τ ) ≤ ψ(τ, X t, x τ ) and thanks to the comparison theorem [START_REF] Pardoux | BSDEs, weak convergence and homogenization of semilinear PDEs[END_REF], we deduce that Y t < Y t , i.e v l ( t, x) < ϕ( t, x), which contradicts our hypothesis.

Remark 5.2. (i) Whenever g does not depends on t

; v(t, x) = Ỹ x 0 is a L p -viscosity solution of the PDE    ∂v ∂s (s, x 1 , x 2 ) = L(x 1 , x 2 )v(s, x 1 , x 2 ) + g(x 1 , x 2 , v(s, x 1 , x 2 )) v(0, x 1 , x 2 ) = H(x 1 , x 2 ), s > 0, x = (x 1 , x 2 ) ∈ IR d+1
Proposition 5.4. Assume (A), (B), (C). Then,

(i) lim ε→0 Y ε 0 = Y (t,x) 0 . (ii) The map (t, x) -→ Y t, x 0 is continuous. (iii) For p > d + 2, the function v(t, x) := Y t, x
0 is a L p -viscosity solution to the PDE (1.5).

Proof. (i) Let Y be the limit process defined in Proposition (4.3). Since Y ε 0 and Y 0 are deterministic, it is enough to prove that lim ε→0 IE(Y [START_REF] Jakubowski | A non-Skorohod topology on the Skorohod space[END_REF], the projection: y → y t is continuous in the S-topology. We then deduce that Y ε 0 converges towards Y 0 in distribution. Since Y ε 0 and Y 0 are bounded, then

ε 0 ) = IE(Y 0 ). We have,    Y ε 0 = H(X ε t ) + t 0 f (X ε u , X 2, ε u , Y ε u )du -M ε t Y 0 = H(X t ) + t 0 f (X u , Y u )du -M t ¿From Jakubowski
lim ε→0 IE(Y ε 0 ) = IE(Y 0 ). (ii) Let (t n , x n ) → (t, x). We assume that t > t n > 0. We have, Y tn, xn s = H(X xn tn ) + tn s f (X xn u , Y tn, xn u )du - tn s Z tn, xn u dM X xn u , 0 ≤ s ≤ t n , (5.1) 
where X xn law ⇒ X x . Since H is a bounded continuous function and f satisfies (C1), one can easily show that the sequence {(Y )du, 0 ≤ s ≤ t.

= A 1 n + A 2 n • Convergence of A 2 n One has IE t tn f(X xn u , Y tn, xn u )du ≤ K(|x|)|t -t n |. Hence A 2 n tends to zero in probability. • Convergence of A 1 n Denote by (Y ′ , M ′ ) the weak limit of {(Y tn, xn , . 0 1 [s,tn] (u)Z xn u dM X xn u )} n∈IN * . In view of Lemma 4.7, one has t s f (X xn u , Y tn, xn u )du law =⇒ t s f (X x u , Y ′ u )du.
Passing to the limit in (5.2), we obtain that Remark As in KK, we can take W instead of W .

Y ′ s = H(X x t ) + t s f(X x u , Y ′ u )du -(M ′ t -M ′ s ), s ∈ [0, t] ∩ D c .

A Appendix: S-topology

The S-topology has been introduced by Jakubowski ( [START_REF] Jakubowski | A non-Skorohod topology on the Skorohod space[END_REF], 1997) as a topology defined on the Skorohod space of càdlàg functions: D([0, T ]; IR). This topology is weaker than the Skorohod topology but tightness criteria are easier to establish. These criteria are the same as the one used in Meyer-Zheng topology, ( [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF], 1984). Let N a, b (z) denotes the number of up-crossing of the function z ∈ D([0, T ]; IR) in a given level a < b. We recall some facts about the S-topology. (F U t ) t≥0 ) be the minimal complete admissible filtration generated by U ε (resp. U). We assume moreover that. for every T > 0, sup ε>0 IE sup 0≤t≤T |M ε t | 2 < C T . If M ε is a F U ε -martingale and M is F U -adapted, then M is a F U -martingale.

Lemma A.5. Let (Y ε ) ε>0 be a sequence of process converging weakly in D([0, T ]; IR p ) to Y . We assume that sup ε>0 IE sup 0≤t≤T |Y ε t | 2 < +∞. Hence, for any t ≥ 0, E sup 0≤t≤T |Y t | 2 < +∞.
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 41 There exists a positive constant C which does not depend on ε such that

  in the sense of weak convergence in C(IR + × IR d+1 ) × D(IR + × IR), equipped with the product of the uniform convergence on compact sets and the S topologies.Proof. (i)-From Proposition 4.2, the family (Y ε , M ε ) ε is tight on D ([0, t], IR)×D ([0, t], IR) endowed with the S-topology. Hence, along a subsequence (still denoted by ε), (Y ε , M ε ) ε converges in law on D ([0, t], IR) × D ([0, t], IR) towards a càd-làg process Y , M .
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  and, D is countable. Hence, Y s = Y s , IP-a.s, ∀s ∈ [0, t]. Moreover, we deduce that, IE [M -. Zu dM X u ] t -[M -. Zu dM X u ] s = 0. As a consequence of Proposition 4.10, we have Corollary 4.11. Y ε ,

Proposition A. 1 .Theorem A. 2 .

 12 (A criteria for S-tight). A sequence (Y ε ) ε>0 is S-tight if and only if it is relatively compact on the S-topology. Let (Y ε ) ε>0 be a family of stochastic processes in D([0, T ]; IR). Then this family is tight for the S-topology if and only if ( Y ε ∞ ) ε>0 and (N a, b (Y ε )) ε>0 are tight for each a < b. Let (Ω, F , IP, (F t ) t≥0 ) be a stochastic basis. If (Y ) 0≤t≤T is a process in D([0, T ]; IR) such that Y t is integrable for any t, the conditional variation of Y is defined byCV (Y ) = sup 0≤t 1 <...<tn=T, partition of [0, T ] n-1 i=1 IE[|IE[Y t i+1 -Y t i | F t i ]|]. The process is call quasimartingale if CV (Y ) < +∞. When Y is a F t -martingale, CV (Y ) = 0. Avariation of Doob inequality (cf. lemma 3, p.359 in Meyer and Zheng, 1984, where it is assumed that Y T = 0) implies that IP sup t∈[0, T ]|Y t | ≥ k ≤ 2 k CV (Y ) + IE sup t∈[0, T ] |Y t | , IE N a, b (Y ) ≤ 1 b -a |a| + CV (Y ) + IE sup t∈[0, T ] |Y t | . It follows that a sequence (Y ε ) ε>0 is S-tight if sup ε>0 CV (Y ε ) + IE sup t∈[0, T ] Let (Y ε) ε>0 be a S-tight family of stochastic process in D([0, T ]; IR). Then there exists a sequence (ε k ) k∈IN decreasing to zero, some process Y ∈ D([0, T ]; IR) and a countable subset D ∈ [0, T ] such that for any n and any (t 1 , ..., t n ) ∈ [0, T ]\D, (Y ε k t 1 , ..., Y ε k tn ) Dist -→ (Y t 1 , ..., Y tn ) Remark A.3. The projection :π T y ∈ (D([0, T ]; IR), S) → y(T )is continuous (see Remark 2.4, p.8 in Jakubowski,1997), but y → y(t) is not continuous for each 0 ≤ t ≤ T . Lemma A.4. Let (U ε , M ε ) be a multidimensional process in D([0, T ]; IR p ) (p ∈ IN * ) converging to (U, M) in the S-topology. Let (F U ε t ) t≥0 (resp.

  tn, xn ,

	. 0 1 [s,tn] (u)Z xn u dM X xn Let us rewrite the equation (5.1) as follows,				
	Y tn, xn s	= H(X xn tn ) +	s	t	f (X xn u , Y tn, xn u	)du -	s	t	1 [s,tn] (u)Z tn, xn u	dM X xn u	(5.2)
			t								
		-	tn	f (X xn u , Y tn, xn u				

u )} n∈IN * is tight in D([0, t] × IR × IR).
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where (X x , Ỹ x s , Zx s ; 0 ≤ s ≤ t), solves the following decoupled FBSDE   

and ρ is bounded, one can easily verify that f satisfies (C1). Therefore, for a fixed positive t, the BSDE with data (H(X x t ), f ) admit a unique solution (Y x s , Z x s ) 0≤s≤t . Moreover, if the function (t, x) ∈ IR + × IR d+1 → v(t, x) = Y x 0 is continuous and hence, it is a L p -viscosity solution of the PDE (1.5).

Under assumptions (A), (B), the SDE (3.1) has a unique weak solution [START_REF] Krylov | On weak uniqueness for some diffusions with discontinuous coefficients[END_REF]. We then have, Proposition 5.3. (Continuity in law of the flow x → X x . ) Assume (A), (B). Let X x s be the unique weak solution of the SDE (3.1), and

Proof. Since b and σ satisfy (A), (B), one can easily check that the sequence X n is tight in C([0, t] × IR d+1 ). By Prokhorov's theorem, there exists a subsequence (denoted also by X n ) which converges weakly to a process X. We shall show that X is a weak solution of SDE (3.1).

• Step 1:

We have need to show that for every ϕ ∈ C ∞ c (IR 1+d ), every 0 ≤ s ≤ u and every function Φ s of (X xn r ) 0≤r<s which is bounded and continuous in the topology of the uniform convergence,

Indeed, since ϕ, Φ are continuous functions and L is continuous out of the set {x 1 = 0}, similar argument as that developed in the proof of Lemma 4.7 gives

Since ϕ, Φ are bounded functions and sup n IE(sup s∈[0, t] |X xn | 2 ) < ∞, the result follows by the

Step 2: From step 1, there exists a F X -Brownian motion B such that,

Weak uniqueness for SDE (3.1) allows us to deduce that X xn law =⇒ X x .