Polling systems with parameter regeneration, the general case - Archive ouverte HAL
Article Dans Une Revue The Annals of Applied Probability Année : 2008

Polling systems with parameter regeneration, the general case

Mikhail Menshikov
  • Fonction : Auteur
  • PersonId : 828694
Serguei Popov
  • Fonction : Auteur
  • PersonId : 828695

Résumé

We consider a polling model with multiple stations, each with Poisson arrivals and a queue of infinite capacity. The service regime is exhaustive and there is Jacksonian feedback of served customers. What is new here is that when the server comes to a station it chooses the service rate and the feedback parameters at random; these remain valid during the whole stay of the server at that station. We give criteria for recurrence, transience, and existence of the~$s$th moment of the return time to the empty state for this model. This paper generalizes the model when only two stations accept arriving jobs which was considered in~\cite{MMPP}. Our results are stated in terms of Lyapunov exponents for random matrices. From the recurrence criteria it can be seen that the polling model with parameter regeneration can exhibit the unusual phenomenon of null recurrence over a thick region of parameter space.
Fichier principal
Vignette du fichier
MacMenPetPop-matrix-v10.pdf (286.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00260810 , version 1 (05-03-2008)

Identifiants

Citer

Iain Macphee, Mikhail Menshikov, Dimitri Petritis, Serguei Popov. Polling systems with parameter regeneration, the general case. The Annals of Applied Probability, 2008, 18 (6), pp.2131-2155. ⟨10.1214/08-AAP519⟩. ⟨hal-00260810⟩
188 Consultations
110 Téléchargements

Altmetric

Partager

More