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POLLING SYSTEMS WITH PARAMETER
REGENERATION, THE GENERAL CASE

By Iain MacPhee, Mikhail Menshikov∗

Dimitri Petritis†, and Serguei Popov ‡

University of Durham, Université de Rennes 1,
and Universidade de São Paulo

We consider a polling model with multiple stations, each with
Poisson arrivals and a queue of infinite capacity. The service regime
is exhaustive and there is Jacksonian feedback of served customers.
What is new here is that when the server comes to a station it chooses
the service rate and the feedback parameters at random; these remain
valid during the whole stay of the server at that station. We give cri-
teria for recurrence, transience, and existence of the sth moment of
the return time to the empty state for this model. This paper gener-
alizes the model when only two stations accept arriving jobs which
was considered in [11]. Our results are stated in terms of Lyapunov
exponents for random matrices. From the recurrence criteria it can
be seen that the polling model with parameter regeneration can ex-
hibit the unusual phenomenon of null recurrence over a thick region
of parameter space.

1. Introduction. There is a large literature e.g., [1, 7, 9, 12, 14, 15]
on polling systems, that is systems with a single moving server and mul-
tiple stations where queues form. Systems of this kind arise frequently in
production or computer networks (e.g., consider the situation when a single
processing unit has to deal with job requests coming from several terminals).
We consider a polling system where the queues at stations can be arbitrarily
long and the service regime is exhaustive, that is the server does not leave a
station until the queue there is empty. Also, customers can move from one
queue to another one before definitively leaving the system. What is new
here and in [11] is that we allow a randomly selected service regime each
time the server visits a station. Throughout the paper we use service regime
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2

to mean the set of service and feedback parameters currently in use; in other
words, we are working with models where those parameters are (randomly)
updated each time the server goes to another station. It is worth mention-
ing that normally in the polling literature arrival and service parameters
are fixed, and our main purpose here is to explore new phenomena which
appear when one allows them to be randomly updated. We mention also the
related work [3], where a single server queue with two possible regimes was
considered. One of the results of [3] is that the asymptotic behaviour of the
process is very different when the slow service rate is less than the arrival
rate of jobs than when it is faster than the arrival rate. This seems to be
very natural from our point of view, cf. Theorem 1.1 and Corollary 1.1.

This paper presents results for a generalization of the model studied
in [11]. The model considered there is essentially two dimensional while
here we consider any number of stations. The reason for splitting this work
into two separate papers, depending on whether two or more stations re-
ceive jobs, is that in the former case the stability conditions are expressible
in terms of explicitly determined factors while in the latter, they are ex-
pressible in terms of factors whose existence is shown but whose values are
inaccessible to direct computation. These factors are reminiscent of the Lya-
punov exponents for products of random matrices whose values usually can
be approximated only by stochastic simulation.

The model in [11] includes general service time and switching time dis-
tributions. With more than two stations the model and its analysis become
considerably more complex so in this paper we discuss exponential service
times, zero switching times and a cyclic server routing scheme to help sim-
plify the discussion. Within this setup, the results of the present paper gen-
eralize those of [11] and the proofs differ substantially in detail as well.

It seems to us that queueing models in which parameters are randomly re-
set are a very natural generalization of standard queueing models. However
stability investigations for such models seem to require quite deep mathe-
matical techniques as these models can exhibit new phenomena. In particular
our polling model can have a “thick” region of null recurrence and even in
ergodic cases the return time to the empty state may have only polyno-
mial moments. This implies that convergence to equilibrium cannot occur
at exponential rate.

1.1. The model. Consider the following continuous time model: there are
d + 1 nodes (stations) indexed by n ∈ Zd+1 := {0, . . . , d}, each one has its
own infinite capacity queue. Customers arrive at the queue of station n
according to a Poisson point process with rate λn > 0, independently of all
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POLLING SYSTEMS WITH PARAMETER REGENERATION 3

other events, n = 0, . . . , d. A single server visits the stations in cyclic order
(0 → 1 → · · · → d → 0 → · · · ) starting at station 0. At each station the
server adopts the exhaustive serving policy: it serves all the customers that
were queueing at the station when the server arrived there together with
all subsequent arrivals up until the queue first becomes empty and then
instantly jumps to the next station. Every served customer either leaves the
system or is transferred to another queue, with given probabilities. Each
time the server arrives at a station, it chooses randomly a serving rate and
feedback (transition) probabilities; those parameters remain valid during the
stay of the server at that station.

To make the last sentence rigorous, we have to make some definitions.
Abbreviating (µ, γ1, . . . , γd) by (µ, γ), define

M =
{
(µ, γ) : µ > 0, γi ≥ 0 for all i, and

d∑
j=1

γj ≤ 1
}
⊂ Rd+1.

Let νn, n = 0, . . . , d, be d + 1 probability measures on M. Denote also
[k] := k mod (d + 1) ∈ Zd+1. Then, we complete the description of the
model as follows: every time the server comes to station n we choose a
random element (µ, γ) ∈ M according to νn, independently of everything
else. For the period while the server performs this batch of services, the
service times are i.i.d. and exponentially distributed with parameter µ. Each
served customer either goes to station [n + k] with probability γk for k = 0,
. . . , d or leaves the system with probability 1− γ1− · · · − γd, independently
of other events. Also, for definiteness we assume that the server just waits
somewhere (say, at some special place S) when there are no customers in
the system (but when the first customer arrives, the server instantaneously
jumps to the corresponding station).

Throughout this paper, and often without recalling it explicitly, we sup-
pose that the (uniform ellipticity) condition below is fulfilled:

Condition E.

(i) There exists ε0 > 0 such that for all n = 0, . . . , d

νn[(µ, γ) : µ > λn + ε0] = 1.

(ii) There exists M0 such that for all n = 0, . . . , d

νn[(µ, γ) : µ ≤ M0] = 1.

Part (i) of the above condition guarantees that the server cannot get stuck
in a single station. Part (ii) is just a technical assumption (using a simple
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monotonicity argument, one can show that this assumption is not necessary
for proving parts (ii) and (iii) of Theorem 1.1 below).

1.2. The main result. Assuming that the process starts from some fixed
and nonempty initial configuration (and initially the server is at station 0),
we define τ as the first moment when there are no customers in the system
(i.e., τ is the time of reaching the zero configuration).

To formulate our result, we need to introduce certain random matrices.
For n ∈ {0, . . . , d}, let A(n) = (a(n)

i,j )i,j=0,...,d−1 be a matrix defined as follows:

a
(n)
0,k =

λ[n+k+1] + γk+1µ

µ− λn
,

k = 0, . . . , d− 1, a
(n)
k,k+1 = 1, k = 0, . . . , d− 2, and a

(n)
i,j = 0 for all other i, j,

where (µ, γ) ∼ νn. That is,

(1.1) A(n) =



λ[n+1]+γ1µ

µ−λn
1 0 0 . . . 0

λ[n+2]+γ2µ

µ−λn
0 1 0 . . . 0

λ[n+3]+γ3µ

µ−λn
0 0 1 . . . 0

...
...

...
...

. . .
...

λ[n+d−1]+γd−1µ

µ−λn
0 0 0 . . . 1

λ[n+d]+γdµ

µ−λn
0 0 0 . . . 0


Let A = A(d) . . . A(0), where A(0), . . . , A(d) defined above are independent
random matrices. Throughout the paper, we suppose that the random ma-
trix A is really random, i.e., one cannot find a deterministic matrix B such
that A = B a.s. (this means in fact that in at least one node there is ran-
domness with respect to the choice of the regime).

Remarks.

• The motivation for the definitions of the random matrices A(n) and A
is given in the arguments leading to (2.9) below. Very briefly, for any
given queue length vector x the random vector Ax gives the proba-
ble queue lengths after the server has completed a cycle of visits to
all stations (a random vector because the service rates and feedback
probabilities are random).

• This random matrix A plays a role similar to the matrix M(s) used
in our previous paper [11] but there are important differences. M(s)
is only a matrix in [11] because we permit Markov switching of the
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POLLING SYSTEMS WITH PARAMETER REGENERATION 5

server there. With the cyclic server route assumed in this paper M(s)
would reduce to a single random variable which is why we are able to
state our criteria there in terms of deterministic parameters.

In the following few lines we introduce the main classification parameter.
Let A1, A2, A3, . . . be a sequence of independent random matrices, each one
having the same distribution as A. Define for any s ≥ 0

(1.2) k(s) = lim
n→∞

(E‖An . . . A1‖s)1/n

(unless otherwise stated, all norms we use in this paper are L1-norms). As
shown below, this limit always exists by submultiplicativity of the norm.
Indeed, let I = {s ∈ R : E‖A‖s < ∞}. Observe that Condition E guarantees
that [0,∞) ⊆ I.

Since the map A 7→ ‖A‖ is submultiplicative, kn(s) = E‖An · · ·A1‖s sat-
isfies kn+m(s) ≤ kn(s)km(s), hence limn

log kn(s)
n = log k(s) exists on I.

If s1, s2 ∈ I with s1 < s2, then the whole segment [s1, s2] ⊆ I. For any
t ∈ (0, 1), by Hölder inequality with p = 1/t and q = 1/(1− t), we have(

kn(ts1 + (1− t)s2)
)n ≤ E(‖An · · ·A1‖pts1)1/p E(‖An · · ·A1‖q(1−t)s2)1/q.

This inequality establishes log-convexity of k(s) (and shows also that k(s) is
continuous). Also, from the nondegeneracy of the random matrices it follows
that k(s) is nonconstant. Furthermore, k′(0) is the top Lyapunov exponent
of A.

The main classification parameter is

(1.3) s0 = inf{s > 0 : k(s) > 1}

(by definition, inf ∅ = +∞). Note that k(0) = 1, and so s0 = 0 if k′(0) > 0,
and 0 < s0 ≤ +∞ if k′(0) < 0. The main result of this paper is the following.

Theorem 1.1 (i) If k′(0) > 0, then P[τ = ∞] > 0, i.e., the process is
transient.

(ii) If k′(0) < 0, then P[τ = ∞] = 0, i.e., the process is recurrent.
(iii) Suppose that 0 < s < s0, then Eτ s < ∞.
(iv) For s > s0, we have Eτ s = ∞.

We do not consider the case when k′(0) = 0. There is some discussion of
the difficulties for the case of two stations in [11].

The above theorem shows that, for the model of this paper, the typical
situation is that geometric ergodicity is absent, and only polynomial mo-
ments of the return time exist (this corresponds to the case s0 < ∞). We
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6

now formulate a simple sufficient condition for the finiteness of s0. For any
matrix B, let ρ(B) be the spectral radius of B (for the case of nonnegative
matrices, ρ(B) is the maximal eigenvalue). We have

(1.4) P[ρ(A) > 1] > 0 =⇒ s0 < ∞.

Indeed, the fact that P[ρ(A) > 1] > 0 implies, by continuity, that there
exist ε, δ > 0 and a nonnegative vector y such that ‖y‖ = 1 and P[Ay >
(1 + ε)y] > δ. Then

E‖An . . . A1‖s ≥ E‖An . . . A1y‖s

≥ (1 + ε)snδn,

and so we obtain from (1.2) and (1.3) that if s is such that (1 + ε)sδ > 1,
then s0 < s.

The relation (1.4) has a nice interpretation:

Corollary 1.1 For the absence of geometric ergodicity (i.e., for s0 to be
finite) it is sufficient that there exists a set of possible parameters (i.e.,
(µ, γ)n ∈ supp νn, n = 0, . . . , d) for which the homogeneous model is tran-
sient.

Indeed, note that for a nonrandom (and nonnegative) matrix, the logarithm
of the largest eigenvalue equals the top Lyapunov exponent, and so by The-
orem 1.1 (i), the model with nonrandom regimes is transient if ρ(A) > 1.

Remark. As with the model of [11], the model of this paper can display an
interesting feature, the existence of thick null recurrence phase. Think about
a family of models depending on one (or several) parameter(s). Suppose that
this family is nicely defined, in such a way that s0 is a continuous function of
those parameters, and such that 1 is in the interior of the range of values of
this function. Then, it is clear that, as we continuously change the values of
the parameters, there are non-degenerate regions that correspond to ergodic-
ity/null recurrence. This kind of behaviour is quite rare; in particular, when
the parameters of the polling system are fixed (say, λi is the arrival rate to
station i, µi is the service rate when the server is in station i, and there is no
feedback), it is known that null recurrence is a critical phenomenon which
can only occur when

∑
i λi/µi = 1, see [7]. Only a few examples of models

having a thick null recurrence phase are known (besides [11], see also [5]).
For a concrete example which demonstrates this situation in the setup of
this paper, we refer the reader to Section 2 of [11]. The example there has
only two stations and so the calculations of the required exponents can be
done explicitly. Note that, for the case of two stations, the models of this
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POLLING SYSTEMS WITH PARAMETER REGENERATION 7

paper and of [11] (with exponential services and without switching time) are
the same.

1.3. Related problems and generalizations. First, we remark that the
model with any deterministic and periodic itinerary of the server can be
studied in exactly the same way as the model of this paper. We decided
to focus on the circular itinerary to avoid notational complications. There
are other interesting routing policies that could be studied, for example,
Markovian (after finishing the service in node i, the server goes to j with
probability Pij), greedy (the server goes to the largest queue), local greedy
(the server goes to the queue that is largest among some set of neighbors),
etc. In this general setting, however, such routing policies cannot be treated
directly by the methods of this paper, so a modification (or at least a non-
trivial refinement) of our approach would be necessary. For the case when
only two stations can receive customers, Markovian routing was considered
in [11].

We believe that the results of this paper remain valid if we allow the
incoming flow rates to be random as well, updating them to new values
(independently from the past) at each server switching time (of course, one
has to require that a condition analogous to Condition E (ii) holds also
for the λs). This leads to a lot more complexity in our proofs but no new
phenomena so we have not formulated the model in this way. Further it
did not seem very natural to us that switching events should affect the
incoming rates at the stations which are “far” from the server. A more
natural model would update the incoming rates only at the stations which
are “close” to the server (similarly to [11]) but this introduces yet more
modelling complications.

There are two other natural ways to generalize the present model: first,
consider service time with general distributions and secondly, consider the
case of nonzero switching time (i.e., when the server empties the queue on a
station, it takes some time traveling to the next one). With some additional
assumptions, it is possible to prove that the analogue of Theorem 1.1 remains
valid. Again, we decided not to describe the present model in this general
form, because it does not lead to any new phenomena and complicates the
proofs a lot.

In the remaining part of this section we describe other two models for
which our method works.

Revolver model. This time, consider a model with stationary server and
moving queues. There are d + 1 locations marked 0, . . . , d and customers
arrive at location n as a Poisson stream of rate λn. The server is always in
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location 0 and serves the queue using a regime (µ, γ) (where µ is the rate
of service, and γn is the probability that a served customer feeds back into
queue n, n = 1, . . . , d). When the queue at location 0 is emptied, all the
customers in the location i are instantly transferred to i − 1, i = 1, . . . , d,
and the server chooses a new regime (µ′, γ′) independently of the past and
according to some probability measure ν̃ on M.

That is, we can visualize this system in the following way: the queues are
located on a wheel, and when the server finishes the current batch of service,
the wheel turns and delivers the next queue to the server. Define (compare
with (1.1))

A′ =



λ1+γ1µ
µ−λ0

1 0 0 . . . 0
λ2+γ2µ
µ−λ0

0 1 0 . . . 0
λ3+γ3µ
µ−λ0

0 0 1 . . . 0
...

...
...

...
. . .

...
λd−1+γd−1µ

µ−λ0
0 0 0 . . . 1

λd+γdµ
µ−λ0

0 0 0 . . . 0


,

where (µ, γ) ∼ ν̃. Then (with the quantities k(s) and s0 defined as in (1.2)
and (1.3)), Theorem 1.1 remains valid for the revolver model. This can be
proved in a similar way to the proof of Theorem 1.1 below (in fact, it is easier
because in the revolver model the server is always in the same position, and
so it is not necessary to introduce d + 1 random matrices with different
distributions).

Model with a gated service discipline. This is a modification of the model
defined in Section 1.1, described as follows. Instead of the exhaustive service
discipline, we consider the so-called gated service discipline (see e.g., Sec-
tion 3.2 of [1]): the server only serves the customers that were in the station
on its arrival, and then proceeds to the next station. The service regime
can be described by the same set of parameters (µ, γ), and here even the
inclusion of parameter γ0 (which corresponds to the probability of sending
the customer to the same station, but before the gate) makes sense. For this
model, we still need an ellipticity condition, but in less restrictive form. For
gated service, we only need to require that ε0 < µ < M0 with probability 1.
This is because, when the server arrives at the station, it only needs to serve
a fixed number of customers (those who were there at the moment of ar-
rival), and so, even if it chooses a very small µ, the service will be eventually
finished, and the server will go to the next station (leaving behind the clients
that arrived after the start of the service).

For n = 0, . . . , d define the matrices (this time they have size (d + 1) ×
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POLLING SYSTEMS WITH PARAMETER REGENERATION 9

(d + 1) instead of d× d)

Ā(n) =



λ[n+1]+γ1µ

µ 1 0 0 . . . 0 0
λ[n+2]+γ2µ

µ 0 1 0 . . . 0 0
λ[n+3]+γ3µ

µ 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

λ[n+d−1]+γd−1µ

µ 0 0 0 . . . 1 0
λ[n+d]+γdµ

µ 0 0 0 . . . 0 1
λn+γ0µ

µ 0 0 0 . . . 0 0


where (µ, γ) ∼ νn, and let Ā = Ā(d) . . . Ā(0), where Ā(d), . . . , Ā(0) are inde-
pendent. Again, the method of this paper applies to this model as well, and
it can be shown that Theorem 1.1 remains valid.

2. Proof of Theorem 1.1. The remaining part of this paper is orga-
nized as follows. First, in Section 2.1, we prove two technical lemmas and
recall a result from [2] that will be used for establishing the existence of
moments of τ . In Section 2.2 we define the model in a formal way and intro-
duce some more notations. In Section 2.3 we define a fluid model related to
our queueing system and prove various technical facts related to it. Then,
in Section 2.4 we prove part (i), in Section 2.5 we prove parts (ii) and (iii),
and, in Section 2.6 we prove part (iv) of Theorem 1.1.

2.1. Some preliminary facts. In this section we establish some technical
facts needed in the course of the proof of Theorem 1.1.

Let Θ1,Θ2,Θ3, . . . be an i.i.d. sequence of nonnegative random matrices,
and define for any s > 0

(2.1) kΘ(s) = lim
n→∞

(E‖Θn . . .Θ1‖s)1/n.

The following result will be important in the course of the proof of Theo-
rem 1.1. For the scalar case, related results can be found in [4, 10], and the
recent paper [8] deals with the matrix case. In fact, the above mentioned
papers contain some deep results on the distribution of the random matrix
(or variable) Λ below; since the proof of Lemma 2.1 is short and elementary,
we nevertheless include it to keep the paper self-contained.

Lemma 2.1 Abbreviate Λ = Θ1 + Θ2Θ1 + Θ3Θ2Θ1 + · · · . Then

(i) if kΘ(s) > 1, then E‖Λ‖s = ∞;
(ii) if kΘ(s) < 1, then E‖Λ‖s < ∞.
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Proof. The proof of part (i) is straightforward: since the matrices are a.s.
nonnegative, we have for any n

E‖Λ‖s ≥ E‖Θn . . .Θ1‖s.

If kΘ(s) > 1, then E‖Θn . . .Θ1‖s →∞ as n →∞ by (2.1), so (i) is proved.
Now, we turn to part (ii). Since for any s ≤ 1

‖Λ‖s ≤
( ∞∑

n=1

‖Θn . . .Θ1‖
)s

≤
∞∑

n=1

‖Θn . . .Θ1‖s

in this case the proof immediately follows from the definition of kΘ(s) as
well. So, from now on we suppose that s > 1. We use here some technique
similar to the proof of Theorem 3.1 of [11], adapted to the matrix case. Let
us recall the following elementary consequence of the Jensen inequality: for
any real numbers u, v,G, H > 0 and s > 1, we have

uG + vH

u + v
≤

(uGs + vHs

u + v

)1/s
,

or, equivalently,

(2.2) (uG + vH)s ≤ (u + v)s−1(uGs + vHs).

Denote Λn = Θ1 + Θ2Θ1 + · · · + Θn . . .Θ1, and let an = E‖Λn‖s. Fix
any α ∈ ((kΘ(s))1/s, 1), and apply (2.2) with u = 1, v = αn+1, G = ‖Λn‖,
H = α−(n+1)‖Θn+1 . . .Θ1‖ to obtain that

E‖Λn+1‖s ≤ E
(
‖Λn‖+ αn+1 × α−(n+1)‖Θn+1 . . .Θ1‖

)s

≤ (1 + αn+1)s−1(E‖Λn‖s + αn+1α−s(n+1)E‖Θn+1 . . .Θ1‖s).(2.3)

From the definition of kΘ(s) it follows that

lim
n→∞

α−s(n+1)E‖Θn+1 . . .Θ1‖s = 0

for any α such that (kΘ(s))1/s < α < 1. Since, trivially, an = E‖Λn‖s ≥
E‖Θ1‖s > 0 for any n, we can conclude that there exists n0 such that for all
n ≥ n0 it holds that

α−s(n+1)E‖Θn+1 . . .Θ1‖s ≤ an.
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POLLING SYSTEMS WITH PARAMETER REGENERATION 11

So, (2.3) implies that, for all n ≥ n0

an+1 ≤ (1 + αn+1)s−1(an + αn+1an) = (1 + αn+1)san.

Thus, for any n,

(2.4) E‖Λn‖s ≤ M,

where

M = an0

∞∏
m=n0

(1 + αm+1)s < ∞.

The proof of the part (ii) of Lemma 2.1 for the case s > 1 follows now
from (2.4) and the monotone convergence theorem. �

The next result is very similar to Lemma 2.1, so we only outline its proof.

Lemma 2.2 Let X0, X1, X2, . . . be a sequence of a.s. positive identically
distributed random variables. Suppose that EXs

0 < ∞ for a given s > 0.
Then, for any α > 1,

(2.5) E
(
X0 +

X1

α
+

X2

α2
+

X3

α3
+ · · ·

)s
< ∞.

Proof. As before, in the case s ≤ 1 the proof is straightforward. When
s > 1, the proof can be done quite analogously to the proof of Lemma 2.1
(ii) (use (2.2) with u = 1, v = α−(n+1), G = X0 + α−1X1 + · · · + α−nXn,
H = Xn+1). �

The next result is Theorem 1 of [2]:

Proposition 2.1 Let α be some positive real number. Suppose that we are
given a {Fn}-adapted stochastic process Zn, n ≥ 0, taking values in an
unbounded subset of R+. Denote by τα the moment when the process Zn

enters the set (0, α). Assume that there exist H > 0, p0 ≥ 1 such that for
any n, Zp0

n is integrable and

(2.6) E(Zp0
n+1 − Zp0

n | Fn) ≤ HZp0−1
n

on {τα > n}. Then there exists a positive constant C = C(H, p0) such that
for all x ≥ 0 whenever Z0 = x with probability 1

(2.7) Eτp0
α ≤ Cxp0 .
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2.2. Notations and the formal definition of the process. According to the
description of the process given in Section 1.1, the current state of the system
can be described by a pair (R,S), where R = (µ, γ) is the current service
regime, and S = (N, ξ0, . . . , ξd) is the current configuration, meaning that
the server is at station N , and ξi is the number of customers at station [N+i],
i = 0, . . . , d. To recover the values of N and (ξ0, . . . , ξd) from S, we use the
notations N (S) = N and K(S) = (ξ0, . . . , ξd).

Denote by ϕm the operation of the cyclic shift by m positions, that is,
ϕm(x0, . . . , xd) = (xm, . . . , xd, x0, . . . , xm−1), and let ek be the kth unit vec-
tor, i.e., ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 on kth position, k = 0, . . . , d. The
transition rates are then described as follows (the current regime is (µ, γ)):

• (N, ξ) → (N, ξ + ei) with rate λ[N+i], i = 0, . . . , d;
• if ξ0 ≥ 2, then

– (N, ξ) → (N, ξ − e0 + ei) with rate µγi;

– (N, ξ) → (N, ξ − e0) with rate µ(1− γ1 − · · · − γd);

• suppose that ξ = (1, 0, . . . , 0, ξk, . . . , ξd) with ξk ≥ 1. Then

– (N, ξ) → ([N + k], ϕk(ξ − e0 + ei)) with rate µγi for i ≥ k, and
the new regime is chosen independently according to ν[N+k];

– (N, ξ) → ([N + i], ϕi(ξ− e0 + ei)) with rate µγi for i < k, and the
new regime is chosen independently according to ν[N+i];

– (N, ξ) → ([N + k], ϕk(ξ− e0)) with rate µ(1− γ1− · · · − γd), and
the new regime is chosen independently according to ν[N+k];

• (N, 1, 0, . . . , 0) → (S, 0, . . . , 0) with rate µ(1− γ1 − · · · − γd);
• (S, 0, . . . , 0) → (n, 1, 0, . . . , 0) with rate λn, n = 0, . . . , d.

We refer to the state of the process at time t as (R(t), S(t)). Recall that
we suppose that the process starts from some nonzero configuration (zero
configuration is (S, 0, . . . , 0)), and τ is the time of reaching the zero config-
uration, i.e.,

τ = inf{t > 0 : N (S(t)) = S}.

For definiteness, we suppose that the trajectories are right-continuous and
N (S(0)) = 0. Now, we need to define the sequence of times when the server
jumps. Put t′0 := 0, and

t′n+1 = inf{t ≥ t′n : N (S(t)) 6= N (S(t′n))}

for all n ≥ 0. Define also, for n such that t′n < τ ,

k(n) = [N (S(t′n))−N (S(t′n−1))],
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POLLING SYSTEMS WITH PARAMETER REGENERATION 13

n ≥ 1, and k(0) := 0. Then, define σ0 = t′0 = 0, and σi = t′n for all i such
that k(0) + · · ·+ k(n−1) < i ≤ k(0) + · · ·+ k(n). This means that if the server
jumps, say, from i to [i + k] (that is, it empties the queue in station i and
there are no customers in [i+1], . . . , [i+k−1]), then we visualize this jump
as an instantaneous sequence of k jumps. This approach has the advantage
that now we can write

(2.8) N (S(σn)) = [n]

for all n such that σn < τ .
Since we choose the regimes independently of the past evolution of the pro-

cess, one also can use the following construction. Let R = (R0, R1, R2, . . .)
be a sequence of independent M-valued random variables, Ri ∼ ν[i]. We
can first fix a realization of this sequence, and then start the process, and
the regimes will be chosen in the following way. Suppose that the initial
configuration is S(0) 6= 0; then take R(0) = RN (S(0)) (in most cases we
suppose that N (S(0)) = 0). Inductively, if R(t) = Ri for t ∈ [t′n, t′n+1), then
R(t′n+1) = Ri+k(n+1) . Note that, analogously to (2.8) when the server uses
the regime Ri, it is in the station [i] (at least before τ ; it is quite easy to
modify this construction so that the last statement would be valid for all t,
but we really do not need that for the purposes of Theorem 1.1).

In what follows, we use symbols PR and ER to denote probability and
expectation given the sequence of regimes R.

2.3. Random fluid model and its relationship with the original process.
Now, we define what we call the random fluid model. Here we suppose that
λ-s and µ are flow rates, i.e., the liquid comes to node n with speed λn,
and when the server is in station k with service rate and feedback pa-
rameters (µ, γ), it sends the liquid from k out of the system with speed
µ(1− γ1− · · · − γd), and to each site [k + j] with speed µγj , j = 1, . . . , d. In
other words, the randomness present in this model only relates to the fact
that, when arriving to a node, the server chooses the serving and transition
parameters (i.e., the speeds of the corresponding flows) at random.

We will refer to (Rf (t), Sf (t)) as the state of the random fluid model at
time t (where, as before, Sf (t) is the configuration and Rf (t) is the regime).
If for a state (Rf , Sf ) the regime is Rf = (µ, γ) and the configuration is
Sf = (N,x0, . . . , xd), then we define by

T(Rf , Sf ) :=
x0

µ− λN
,

the time that the server needs to pump all the liquid out of the (current)
station N .

imsart-aap ver. 2007/12/10 file: MacMenPetPop-matrix-v10.tex date: March 5, 2008



14

To define the fluid model starting from Sf (0) = (N,x0
0, . . . , x

0
d) (as men-

tioned before, normally we will take N = 0), where x0
0 > 0, and with the

initial regime Rf (0) = (µ, γ), put

Sf (t) = (N,x0
0 − (µ− λN )t, x0

1 + (µγ1 + λ[N+1])t, . . . , x
0
d + (µγd + λ[N+d])t),

and Rf (t) = Rf (0) for t < σf
N+1 := T(Rf (0), Sf (0)) = x0

0/(µ − λN ). For
t = σf

N+1, choose Rf (σf
N+1) ∼ ν[N+1] independently, and put

Sf(σf
N+1) = ([N+1], x0

1+(µγ1+λ[N+1])σ
f
N+1, . . . , x

0
d+(µγd+λ[N+d])σ

f
N+1, 0).

Inductively, suppose that for some i > N the server switching time σf
i

is defined, and the current configuration is Sf (σf
i ) = ([i], xi

0, . . . , x
i
d−1, 0)

(note that the last coordinate is 0 because the server has just emptied the
station and jumped, and that N (Sf (σf

i )) always equals [i] since, for the fluid
model, the server can never jump over a station). Then, choose Rf (σf

i ) ∼ ν[i]

independently, and (supposing that Rf (σf
i ) = (µ′, γ′)), put σf

i+1 = σf
i +

T(Rf (σf
i ), Sf (σf

i )), for t ∈ [σf
i , σf

i+1) define Rf (t) = Rf (σf
i ),

Sf (t) = ([i], xi
0 − (µ′ − λ[i])t, x

i
1 + (µ′γ′1 + λ[i+1])t, . . . , x

i
d + (µ′γ′d + λ[i+1])t),

and (abbreviating for the moment T := T(Rf (σf
i ), Sf (σf

i )))

Sf (σf
i+1) = ([i + 1], xi

1 + (µ′γ′1 + λ[i+1])T, . . . , xi
d + (µ′γ′d + λ[i+1])T, 0).

Let Sf (σf
i+1) := ([i + 1], xi+1

0 , . . . , xi+1
d−1, 0). At this point it is important

to note that, denoting by xi (respectively, xi+1) the column vector with
coordinates xi

j (respectively, xi+1
j ), j = 0, . . . , d− 1, we have

(2.9) xi+1 = Ã(i)xi,

where Ã(i) is the matrix defined in (1.1), with (µ′, γ′) instead of (µ, γ) (i.e.,
Ã(i) depends on the current regime). Letting k = [i], (µ′, γ′) was sampled
from νk and Ã(i) is a random matrix distributed like A(k) of (1.1).

An important technical fact is that, for the fluid model, at the moments σf
i

of server’s transition, the relative difference between the amounts of liquid
in the stations (not counting the station that the server just left) cannot
become too large:

Lemma 2.3 Suppose that the initial configuration Sf (0) = (N,x0
0, . . . , x

0
d)

is such that x0
k 6= 0 for all k = 0, . . . , d−1. Then there exists a constant K ∈
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(0,∞), depending only on ε0,M0 (from Condition E), λk-s, d, such that a.s.
for all i > d

(2.10)
xi

n

xi
m

≤ K for all n, m = 0, . . . , d− 1.

Proof of Lemma 2.3. Denote λ = min{λ0, . . . , λd} > 0, λ̂ = max{λ0, . . . , λd},
and suppose without restriction of generality that N = 0. Let h =

∑d
i=0 x0

i

be the total amount of liquid present in the fluid system at time 0. Note
that, since we aim for a constant K that does not depend on the initial
configuration, to prove this lemma it is enough to show that there is K such
that

(2.11)
max{xd+1

0 , . . . , xd+1
d−1}

min{xd+1
0 , . . . , xd+1

d−1}
≤ K a.s.

First, we will give a lower bound on min{xd+1
0 , . . . , xd+1

d−1}. Note that, ac-
cording to Condition E, each station is emptied with speed at most M0, a.s.
Clearly, max{xd+1

0 , . . . , xd+1
d } ≥ h/(d + 1), and suppose that this maximum

is reached in station m̂. Then, the time it takes to empty the m̂th station
T(Rf (σf

m̂), Sf (σf
m̂)) is at least h

(d+1)M0
(since the amount of liquid in m̂ will

not decrease by the time the server gets there). Therefore, at the moment
σf

m̂+1 (i.e., when the server pumps all the liquid out of station m̂), we ob-
tain that all the nonempty stations have at least λh

(d+1)M0
units of liquid.

Repeating this argument once again (if m̂ 6= d), we obtain that

(2.12) min{xd+1
0 , . . . , xd+1

d−1} ≥
λ2h

(d + 1)M2
0

.

Now, we obtain an upper bound on max{xd+1
0 , . . . , xd+1

d−1}. Again, the key
observation is that, by Condition E, the speed of emptying the stations
cannot be less than ε0, a.s. Initially, each station (including the one where the
server starts) has at most h units of liquid. Thus, the time T(Rf (0), Sf (0))
to empty the 0th station is at most h/ε0, and so at time σf

1 all the stations
have at most

h +
(λ̂ + 1)h

ε0
= h

(
1 +

(λ̂ + 1)
ε0

)
units of liquid. Repeating this argument d times more, we see that

(2.13) max{xd+1
0 , . . . , xd+1

d−1} ≤ h
(
1 +

(λ̂ + 1)
ε0

)d+1
.
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Using (2.12) and (2.13), we find that (2.11) is verified with

K =
(1 + ε−1

0 (λ̂ + 1))d+1(d + 1)M2
0

λ2
,

and the proof of Lemma 2.3 is finished. �

Define a sequence of random variables

Dn(Sf (0)) = σf
n =

n−1∑
i=0

T(Rf (σf
i ), Sf (σf

i ))

(where σf
0 := 0), and

D∞(Sf (0)) = lim
n→∞

σf
n =

∞∑
i=0

T(Rf (σf
i ), Sf (σf

i )).

Intuitively, the random variable D∞(Sf (0)) can be interpreted as the time
needed to completely empty the fluid system. Clearly, when D∞(Sf (0)) <
∞, the above definition of the fluid model works only when t is less than
the (random) time D∞(Sf (0)).

Recall that, by Condition E, it holds that

(2.14) T(Rf (σf
i ), Sf (σf

i )) ∈ [M−1
0 xi

0, ε
−1
0 xi

0] a.s.

Also, from Condition E and (2.9), we obtain that for some positive constants
C1, C2 and for all k

(2.15) C1‖xk‖ ≤ ‖xk+1‖ ≤ C2‖xk‖ a.s.

Using (2.14) and (2.15), we obtain that for all i ≥ 0

d∑
j=0

T(Rf (σf
i+j), S

f (σf
i+j)) ≤ ε−1

0 (xi
0 + · · ·+ xi+d

0 )

≤ ε−1
0 (1 + C2 + · · ·+ Cd

2 )‖xi‖.(2.16)

Analogously, using also Lemma 2.3, we can write for all i ≥ d

d∑
j=0

T(Rf (σf
i+j), S

f (σf
i+j))

≥ M−1
0 (xi

0 + · · ·+ xi+d
0 )
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≥ (M0Kd)−1(1 + (C1/Kd)−1 + · · ·+ (C1/Kd)d)‖xi‖.(2.17)

Denote Â(n) = Ã(d + n(d + 1)) . . . Ã(1 + n(d + 1))Ã(n(d + 1)). Clearly, the
matrices Â(n) are i.i.d. and Â(n) law= A. Denote also for all 0 ≤ n ≤ ∞

Λ̂n = Â(0) + Â(1)Â(0) + · · ·+ Â(n) . . . Â(0).

Note the following two properties of the L1-norm:

• if B1, B2 are nonnegative matrices and x is a nonnegative vector, then
‖B1x‖+ ‖B2x‖ = ‖(B1 + B2)x‖, and

• if ‖x‖ ≤ 1 and xj ≥ c > 0 for all j, then ‖Bx‖ ≤ ‖B‖ ≤ c−1‖Bx‖ for
any nonnegative matrix B.

Taking this into account, from (2.9), (2.16), and (2.17) we obtain that there
exist U1, U2 such that

(2.18) U1‖Λ̂n−1‖ ≤ Dn(d+1)(S
f (0)) ≤ U2‖Λ̂n−1‖,

and so

(2.19) U1‖Λ̂∞‖ ≤ D∞(Sf (0)) ≤ U2‖Λ̂∞‖.

Analogously to the stochastic model of Section 2.2, we can first choose
the sequence of regimes R = (R0, R1, R2, . . .) (as before, it is a sequence
of independent M-valued random variables, Ri ∼ ν[i]). Then, given a re-
alization of this sequence, put Rf (t) := Ri, t ∈ [σf

i , σf
i+1), i ≥ N (Sf (0)).

It is important to note that, when R is fixed, the fluid model becomes a
completely deterministic process; in particular, the values of Dn(Sf (0)) and
D∞(Sf (0)) can be explicitly calculated. To indicate this, when R is given,
we write Dn(Sf (0) | R) and D∞(Sf (0) | R) for those quantities. Also, note
that all the variables in R (beginning with the N (Sf (0))-th one) will be
used, which is not necessarily the case for the stochastic model.

To prove Theorem 1.1, an important idea is to relate the behavior of
the stochastic system to that of the fluid model when they share the same
regimes. In other words, a coupling of these two systems can be performed
by using the same sequence of regimes R. Consider any nonempty initial
configuration S(0) = Sf (0) = (n, y0, . . . , yd) and take any R(0) = Rf (0) =
(µ, γ) ∈ supp νn. Let σs = inf{t ≥ 0 : N (S(t)) 6= n} be the time one
needs to wait until the server’s jump for the stochastic model, and let
T(Rf (0), Sf (0)) = y0

µ−λn
be the corresponding time for the fluid model.

Then, we have the following result:
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Lemma 2.4 (i) For any δ > 0 there exists a constant V1 = V1(δ) > 0
(depending also on ε0,M0 from Condition E, λs, d) such that

(2.20) PR[|σs − T(Rf (0), Sf (0))| ≤ δy0] ≥ 1− e−V1y0 .

(ii) Suppose that S(σs) = ([n + 1], z0, . . . , zd−1, 0) (here we assume that in
the initial configuration y1 > 0, otherwise it is not certain that the next
destination of the server will be [n + 1]) and Sf (T(Rf (0), Sf (0))) =
([n+1], zf

0 , . . . , zf
d−1, 0). Let Ã be the matrix defined in (1.1), and abbre-

viate y = (y0, . . . , yd−1)T, z = (z0, . . . , zd−1)T, zf = (zf
0 , . . . , zf

d−1)
T =

Ãy. Then for any δ > 0 there exist V2 = V2(δ) > 0 (depending also on
ε0,M0 from Condition E, λk-s, d) such that

(2.21) PR[|z − zf | ≤ δy0] ≥ 1− e−V2y0 .

Proof. The proof of this fact is completely elementary, so we give only a
sketch.

First, we deal with (2.20). The evolution of the queue in the current
station n can be represented as a birth-and-death process X(t) on Z starting
from y0 > 0, with (constant) birth rate λn and death rate µ. Now, the
moment σs is the time to reach 0 for this process. For the sake of simplicity,
suppose that µ + λn = 1, i.e., the total jump rate of the process X(t) is 1
(this can always be done by rescaling the time, and the scaling factor will
be bounded from both sides by Condition E). Note that

P
[
σs >

y0

µ− λn
+ δy0

]
≤ P

[
X

( y0

µ− λn
+ δy0

)
> 0

]
.

The number of jumps of X(t) on the time interval [0, y0

µ−λn
+ δy0] will be at

least y0

µ−λn
+ δy0

2 with probability at least 1− e−C1y0 for some C1 > 0 (and
it is not difficult to see that the constant C1 can be chosen uniformly by
Condition E). For the corresponding discrete-time random walk X̂(n), it is
a straightforward computation to bound P[X̂( y0

µ−λn
+ δy0

2 ) > 0] from above.
To bound P[σs < y0

µ−λn
−δy0] from above, we note that, by time y0

µ−λn
−δy0

the continuous-time process X(t) will perform at most y0

µ−λn
− δy0

2 jumps with
probability at least 1− e−C2y0 for some C2 > 0. So, we write

P
[
σs <

y0

µ− λn
− δy0

]
≤

∑
m≤ y0

µ−λn
− δy0

2

P[X̂(m) ≤ 0],

and then again use large deviations estimates to bound the terms in the
right-hand side of the above display.

As for (2.21), it follows easily from (2.20) if we take into account the
following two observations:
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• by (2.20), we have good control on σs (the time it takes to empty the
queue in n);

• knowing this time, for all i = 1, . . . , d it is straightforward to estimate
how many customers will come to station [n+i] during that time (given
σs = t, the number of customers that came from outside is simply a
Poisson random variable with mean λ[n+i]t); moreover, we can easily
write estimates on the total number of customers that came out of
station n, and then observe that the proportion (roughly) γi of them
go to [n + i].

�

2.4. Transience. Here we prove part (i) of Theorem 1.1, i.e., we show
that if k′(0) > 0 then P[τ = ∞] > 0. The corresponding result in [11] was
established using the Lyapunov function technique but we provide a different
argument here.

The quantity k′(0) > 0 is in fact the top Lyapunov exponent of A, so
for almost every R there exist α > 1 (not depending on R) and a positive
number C1 = C1(R) such that

(2.22) ‖An . . . A1‖ > C1α
n

for all n. Note that, since A
law= Ã(i(d + 1) + d) . . . Ã(i(d + 1)) for all i ≥ 0,

from (2.22) we obtain that for some C2

(2.23) ‖Ã(m− 1) . . . Ã(d + 1)‖ ≥ C2α
m/(d+1)

for all m > d + 1.
Now, the idea is to compare the stochastic model and the fluid model

which start from the same initial configuration and share the same sequence
of regimes.

Consider the stochastic and the fluid model with the same initial config-
uration:

S(0) = Sf (0) = (0, ξ0
0 , . . . , ξ

0
d−1, 0) = (0, x0

0, . . . , x
0
d−1, 0),

and, as before, (ξi
0, . . . , ξ

i
d) = K(S(σi)), (xi

0, . . . , x
i
d) = K(Sf (σi)). Since we

have ξi
d = xi

d = 0 for all i, let us denote ξi = (ξi
0, . . . , ξ

i
d−1)

T and xi =
(xi

0, . . . , x
i
d−1)

T. Here T means transposed, so ξi and xi are column vectors.
Consider the sequence of events

Bδ
m = {ξm ≥ (1− δ)mxm},
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m ≥ 1. From (2.9) and (2.23) we obtain that

‖xm‖ = ‖Ã(m− 1)Ã(m− 2) . . . Ã(d + 1)xd+1‖
≥ C3‖Ã(m− 1)Ã(m− 2) . . . Ã(d + 1)‖,

so, by Lemma 2.3 we have that xm
0 ≥ C4α

m/(d+1) for some C4 > 0. With
this fact, we recall Lemma 2.4 (ii), and write for n > d + 1

PR[Bδ
n | Bδ

n−1, . . . , B
δ
1]

≥ P[ξn ≥ (1− δ)n−1Ã(n− 1)xn−1 | ξn−1 = (1− δ)n−1xn−1]

≥ 1− exp{−V2(δ)(1− δ)n−1xn−1
0 }

≥ 1− exp{−V2(δ)(1− δ)n−1C4α
(n−1)/(d+1)}.(2.24)

Choose δ > 0 in such a way that (1 − δ)α1/(d+1) > 1. It is clear that
PR[Bδ

1] > 0 and PR[Bδ
k | Bδ

k−1, . . . , B
δ
1] > 0 for all k ≤ d + 1, so, by (2.24),

it follows that PR[∩∞n=1B
δ
n] > 0. Since on {∩∞n=1B

δ
n} we know that ξn

0 ≥
(1− δ)nC4α

n/(d+1) → ∞, it holds that τ = ∞ with positive probability for
almost every R. This proves the transience result. �

2.5. Recurrence and existence of moments. First, note that if k′(0) < 0
then s0 > 0, and that if Eτ s < ∞ for at least one s > 0 then P[τ = ∞] = 0,
so part (ii) of Theorem 1.1 easily follows from part (iii). Thus, we concentrate
on part (iii).

Fix s such that k(s) < 1 (or, equivalently, s < s0). For the stochastic
process S(t) define a sequence of stopping times `n, n = 0, 1, 2, . . ., via:
`0 := 0,

`n+1 = inf{t > `n : S(t) 6= S(`n)}

for n ≥ 0. The time `n is the nth jump time of S(t) i.e., a customer arrives
at the system or a service is completed.

Given the sequence of regimes R, the process Ŝ(n) := S(`n) is a discrete-
time Markov chain (however, in general it need not be time-homogeneous).
If the current regime is (µ, γ), then if Ŝ(n) = (N, ξ) with ξ0 > 1 (it is easy
also to treat the case ξ0 = 1 analogously to what was done in the beginning
of Section 2.2 for continuous time), then

Ŝ(n + 1) =


(N, ξ + ei) with probability Z−1λ[N+i],

(N, ξ − e0 + ei) with probability Z−1µγi,
(N, ξ − e0) with probability Z−1µ(1− γ1 − · · · − γd),

where Z = µ + λ0 + · · ·+ λd.
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For a configuration S = (N, ξ) and a sequence of regimes R define fR(S)
to be the time it takes for the fluid model to arrive at 0 starting from S:

fR(S) = D∞(S | R).

We need the following

Lemma 2.5 There exists ε̂ > 0 such that for all n and for all possible
regimes

(2.25) ER(fR(Ŝ(n + 1))− fR(Ŝ(n)) | Ŝ(n) = S,N (S) 6= S) < −ε̂.

Proof. First of all, it is not difficult to obtain that fR(N,x) is a linear
function of x. Then, if (µ, γ) is the current regime, write, abbreviating as
before Z = µ + λ0 + · · ·+ λd,

ER(fR(Ŝ(n + 1)) | Ŝ(n) = (N,x))

= Z−1
d∑

i=0

λ[N+i]f
R(N,x + ei) + Z−1µ

d∑
i=1

γif
R(N,x− e0 + ei)

+ Z−1µ(1− γ1 − · · · − γd)fR(N,x− e0)

= fR(N,x + ŷ),(2.26)

where

ŷ = Z−1
( d∑

i=0

λ[N+i]ei + µ
d∑

i=1

γi(ei − e0)− µ(1− γ1 − · · · − γd)e0

)

= Z−1
( d∑

i=1

(λ[N+i] + µγi)ei − (µ− λN )e0

)
.(2.27)

If the fluid model is now in (N,x) with regime (µ, γ), then in Z−1 time units
it will be in (N,x + ŷ), so

ER(fR(Ŝ(n + 1))− fR(Ŝ(n)) | Ŝ(n) = S,N (S) 6= S) = −Z−1 < −ε̂,

where ε̂ = (λ0 + · · ·+ λd + M0)−1 (recall that M0 is from Condition E). �

From Theorem 2.1.1 of [6] we obtain that (remember that τ corresponds
to the continuous-time process, and the total jump rate is bounded from
below by λ0 + · · ·+ λd)

(2.28) ER τ ≤ ε̂−1(λ0 + · · ·+ λd)fR(S(0)),
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and, by Jensen inequality,

(2.29) ERτ s ≤ ε̂−s(λ0 + · · ·+ λd)s(fR(S(0))
)s

,

for any s ≤ 1. We can use (2.19) and Lemma 2.1 to get that Eτ s < ∞ when
k(s) < 1 (for the case s ≤ 1).

Now, the goal is to obtain an analog of (2.29) for s > 1.
The idea is to use Proposition 2.1. For that, it would be nice to have a

constant C such that

(2.30) |fR(Ŝ(n + 1))− fR(Ŝ(n))| ≤ C, a.s.

For a fixed R such C exists (take C = fR(0, e0 + · · · + ed)), but it is not
uniform, which prevents us from getting an analog of (2.29) (with a constant
that does not depend on R!) directly from Proposition 2.1.

To get around this difficulty, let us proceed in the following way. We
consider another function fRε (·), which is the time of reaching the origin
for a slightly modified fluid model that dominates the original one. For this
new function, when the maximal one-step increment is large (cf. (2.30)), it
happens also that the drift in the negative direction is large as well, and
that permits us to apply Proposition 2.1.

Fix ε > 0 and consider a modification of the present model, where the new
arrival rates are λ′i = λi+ε, i = 0, . . . , d. As in Section 2.3, define D

(ε)
∞ (S | R)

to be the total time needed to completely empty the fluid system with λ′i-s
in the place of λi-s, starting with S and when the sequence of regimes R is
fixed. And, denote fRε (S) := D

(ε)
∞ (S | R).

Analogously to (2.26), we can write (here ER is the same as before, i.e.,
it is related to the process with λi-s, and not λ′i-s)

ER(fRε (Ŝ(n + 1)) | Ŝ(n) = (N,x)) = fRε (N,x + ŷ)

= fRε (N,x + ŷ1)− εF
(ε)
N ,

where ŷ is from (2.27),

ŷ1 = Z−1
( d∑

i=1

(λ′[N+i] + µγi)ei − (µ− λ′N )e0

)
= ŷ + εZ−1(e0 + · · ·+ ed),

and F
(ε)
N := fRε (N, e0 + · · ·+ ed). So,

ER(fRε (Ŝ(n + 1)) | Ŝ(n) = (N,x)) = −Z−1 − εZ−1F
(ε)
N
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< −εZ−1F (ε),(2.31)

where F (ε) = minN=0,...,d F
(ε)
N . Also, from Condition E and Lemma 2.3 it is

not difficult to show that (compare with (2.30)) there exists C1 such that

|fRε (Ŝ(n + 1))− fRε (Ŝ(n))| ≤ C1F
(ε), a.s.

Again using Condition E and Lemma 2.3, it is straightforward to obtain
that there exists C2 such that, on Ŝ(n) = (N,x)

(2.32)
fRε (Ŝ(n + 1))− fRε (N,x)

fRε (N,x)
≤ C2

‖x‖
.

Abbreviate Zn := fRε (Ŝ(n)). Using some elementary calculus we see that
for any C4 > 0 there exists C3 > 0 (depending on s) such that

(1 + y)s ≤ 1 + sy + C3y
2 on {y ∈ R : |y| < C4}.

So, by (2.31), (2.32), if x is such that C2
‖x‖ < C4,

ER(Zs
n+1 − Zs

n | Ŝ(n) = (N,x))

= (fRε (N,x))s−1ER
((

1 +
Zn+1 − Zn

Zn

)s
− 1

∣∣∣ Ŝ(n) = (N,x)
)

≤ (fRε (N,x))s−1
[
sER(Zn+1 − Zn | Ŝ(n) = (N,x))

+ C3(fRε (N,x))−1ER((Zn+1 − Zn)2 | Ŝ(n) = (N,x))
]

≤ (fRε (N,x))s−1
(
− sZ−1εF (ε) + C3C

2
1

(F (ε))2

‖x‖fRε (N,x/‖x‖)

)
.

By Condition E and Lemma 2.3, there exist C5, C6 > 0 such that F (ε) > C5

and F (ε)

fRε (N,e)
< C6 for any e such that ‖e‖ = 1. So, we obtain that there

exists a1 such that

ER(Zs
n+1 − Zs

n | Ŝ(n) = (N,x)) ≤ (fRε (N,x))s−1F (ε)
(
− sZ−1ε +

C3C
2
1C6

‖x‖

)
≤ −C7(fRε (N,x))s−1

for x such that ‖x‖ ≥ a1. From Proposition 2.1, we obtain that there exists
C8 > 0 (depending also on s) such that

(2.33) ERτ s ≤ C8
(
fRε (S(0))

)s
,

imsart-aap ver. 2007/12/10 file: MacMenPetPop-matrix-v10.tex date: March 5, 2008



24

for s > 1.
Now, for any δ > 0 we can find ε > 0 such that

(2.34) fRε (S(0)) = D(ε)
∞ (S(0) | R) ≤ ‖Λ̂(δ)

∞ ‖‖S(0)‖,

where

Λ̂(δ)
∞ = (1 + δ)Â(0) + (1 + δ)2Â(1)Â(0) + (1 + δ)3Â(2)Â(1)Â(0) + · · · .

Choose δ in such a way that (1 + δ)k(s) < 1, and use (2.34) and Lemma 2.1
to obtain that

E(τ(a1))s < ∞,

where τ(a1) is the moment of hitting the set {x : ‖x‖ < a1} for the
discrete-time process. Then, by a standard argument (see e.g., Theorem A.1
from [13]) we get that, for the discrete-time process, the sth moment of the
hitting time of S is finite, and so Eτ s < ∞. �

2.6. Nonexistence of moments. In this section we prove part (iv) of The-
orem 1.1. We have to prove that, if s > s0 (equivalently, k(s) > 1) then
Eτ s = ∞.

The strategy of the proof is the following.

1. We consider the fluid model and we note first that, by Lemma 2.1 the
expectation of the sth moment of the random variable D∞ is infinite.

2. We consider a smaller random time, which is the time of reaching some
“growing” set. Then, with the help of Lemma 2.2, we prove that the
sth moment of that random time is still infinite.

3. We look now at the stochastic model when the trajectory of the fluid
model is fixed (i.e., with a fixed sequence of regimes R). Then, we
prove that with a constant probability the time of reaching that finite
set for the stochastic process will be greater than the corresponding
time for the fluid model.

4. This fact permits us to obtain that, given R, the sth moment of the
time of reaching 0 for the stochastic process is (roughly) proportional
to the corresponding time for the fluid model (which is deterministic,
since R is fixed).

5. Then, we integrate and, using Lemma 2.1, conclude that Eτ s = ∞.

Let nt = max{i : σf
i ≤ t}. Define, for some constants δ,K to be chosen

later

(2.35) T (x0,R) = inf
{
t : ‖K(Sf (t))‖ ≤ ‖x0‖(1 + δ)nt

K

}
,
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where K(Sf (0)) = x0. First, our goal is to prove that E(T (x0,R))s = ∞
if K is large and δ is small enough.

From (2.9), Condition E, and Lemma 2.3, we obtain that, for some C1

(2.36) T (x0,R) ≥ C1‖(Ã(0) + Ã(1)Ã(0) + · · ·+ Ã(U) . . . Ã(0))x0‖,

where

(2.37) U = min
{
k :

∥∥∥ Ã(k)
(1 + δ)

. . .
Ã(0)

(1 + δ)
x0

∥∥∥ ≤ ‖x0‖
K

}
.

Denote for any a > 0

T a(R) = inf
x:‖x‖=a

T (x,R), T̂ a(R) = sup
x:‖x‖=a

T (x,R).

Using Condition E and Lemma 2.3, we obtain that there exists C2 > 0 such
that

(2.38)
T̂ a(R)
T a(R)

≤ C2

for any a and R. By (2.36) and Lemma 2.3,

T (x0,R) ≥ C1

∥∥∥( Ã(0)
(1 + δ)

+
Ã(1)Ã(0)
(1 + δ)2

+ · · ·+ Ã(U) . . . Ã(0)
(1 + δ)U

)
x0

∥∥∥
≥ C3

∥∥∥ Ã(0)
(1 + δ)

+
Ã(1)Ã(0)
(1 + δ)2

+ · · ·+ Ã(U) . . . Ã(0)
(1 + δ)U

∥∥∥‖x0‖

for some C3.
If K is large enough, then there exist 1 < K ′ ≤ K and C4 such that

T a(R) ≥ C4a
∥∥∥ Â(0)
(1 + δ)d+1

+
Â(1)Â(0)

(1 + δ)2(d+1)
+ · · ·+ Â(U ′) . . . Â(0)

(1 + δ)U ′(d+1)

∥∥∥
=: Ψa,(2.39)

where (compare with (2.37))

(2.40) U ′ = min
{
k :

∥∥∥Â(k) . . . Â(0)
(1 + δ)k(d+1)

∥∥∥ ≤ 1
K ′

}
.

Abbreviate b = ‖x0‖. Using (2.38) and (2.40), one can write

∥∥∥ Â(0)
(1 + δ)d+1

+
Â(1)Â(0)

(1 + δ)2(d+1)
+

Â(2)Â(1)Â(0)
(1 + δ)3(d+1)

· · ·
∥∥∥
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≤
∥∥∥ Â(0)
(1 + δ)d+1

+ · · ·+ Â(U ′) . . . Â(0)
(1 + δ)U ′(d+1)

∥∥∥
+

1
K ′

∥∥∥Â(U ′ + 1)Â(U ′) . . . Â(0)
(1 + δ)(U ′+1)(d+1)

+ · · ·
∥∥∥.

Continuing in this way and using (2.39), we can write∥∥∥ Â(0)
(1 + δ)d+1

+
Â(1)Â(0)

(1 + δ)2(d+1)
+

Â(2)Â(1)Â(0)
(1 + δ)3(d+1)

· · ·
∥∥∥ ≤ C5

∞∑
n=1

Zn

(K ′)n
,

where Zi, i = 1, 2, 3, . . . are independent copies of Ψb. When k(s) > 1 and δ
is small enough to ensure that (1 + δ)−1k(s) > 1, Lemma 2.1 implies that
(use Θk = (1 + δ)−1Â(k), so that kΘ(s) = (1 + δ)−1k(s))

E
∥∥∥ Â(0)
(1 + δ)d+1

+
Â(1)Â(0)

(1 + δ)2(d+1)
+

Â(2)Â(1)Â(0)
(1 + δ)3(d+1)

· · ·
∥∥∥s

= ∞,

and so, by Lemma 2.2, EΨb = ∞. From (2.39), we obtain that

(2.41) E(T (x0,R))s = ∞.

Let (recall (2.35)) κ = nT (x0,R). Denote

Bn =
{
‖K(S(σn))‖ ≥

(
1− δ

2

)
‖K(Sf (σf

n))‖
}
,

and

B =
κ⋂

n=1

Bn.

From part (ii) of Lemma 2.4 we obtain that for n ≤ κ

(2.42) PR[Bn | Bn−1, . . . , B1] ≥ 1− exp{−C6‖K(Sf (σf
n))‖}

for some C6 > 0. By the definition (2.35) of T (x0,R),

‖K(Sf (σf
n))‖ ≥ ‖x0‖(1 + δ)n

K
,

so (2.42) implies that

PR[B] ≥
∞∏

n=1

(1− e−C7(1+δ)n
) > 0.

Now, on B we have that τ > T (x0,R), so ERτ s ≥ C8(T (x0,R))s for some
positive constant C8. Using (2.41), we obtain that

Eτ s ≥ C8E(T (x0,R))s = ∞. �
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