Integrable Lattice Realizations of Conformal Twisted Boundary Conditions
Résumé
We construct integrable realizations of conformal twisted boundary conditions for ^sl(2) unitary minimal models on a torus. These conformal field theories are realized as the continuum scaling limit of critical A-D-E lattice models with positive spectral parameter. The integrable seam boundary conditions are labeled by (r,s,\zeta) in (A_{g-2},A_{g-1},\Gamma) where \Gamma is the group of automorphisms of G and g is the Coxeter number of G. Taking symmetries into account, these are identified with conformal twisted boundary conditions of Petkova and Zuber labelled by (a,b,\gamma) in (A_{g-2}xG, A_{g-2}xG,Z_2) and associated with nodes of the minimal analog of the Ocneanu quantum graph. Our results are illustrated using the Ising (A_2,A_3) and 3-state Potts (A_4,D_4) models.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|