A multiple covariance approach to PLS regression with several predictor groups: Structural Equation Exploratory Regression - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

A multiple covariance approach to PLS regression with several predictor groups: Structural Equation Exploratory Regression

Résumé

A variable group Y is assumed to depend upon R thematic variable groups X 1, ..., X R . We assume that components in Y depend linearly upon components in the Xr's. In this work, we propose a multiple covariance criterion which extends that of PLS regression to this multiple predictor groups situation. On this criterion, we build a PLS-type exploratory method - Structural Equation Exploratory Regression (SEER) - that allows to simultaneously perform dimension reduction in groups and investigate the linear model of the components. SEER uses the multidimensional structure of each group. An application example is given.
Fichier principal
Vignette du fichier
SEER_HAL.pdf (446.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00239491 , version 1 (06-02-2008)
hal-00239491 , version 2 (09-02-2008)

Identifiants

Citer

Xavier Bry, Thomas Verron, Pierre Cazes. A multiple covariance approach to PLS regression with several predictor groups: Structural Equation Exploratory Regression. 2008. ⟨hal-00239491v1⟩
541 Consultations
583 Téléchargements

Altmetric

Partager

More