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Abstract : A variable group Y is assumed to depend upon R thematic variable groups  X 1, ..., X R .  
We assume that components in Y depend linearly upon components in the Xr's. In this work, we 
propose a  multiple  covariance  criterion  which  extends  that  of  PLS regression to  this  multiple  
predictor groups situation. On this criterion, we build a PLS-type exploratory method - Structural  
Equation  Exploratory  Regression  (SEER)  -  that  allows  to  simultaneously  perform  dimension 
reduction  in  groups  and  investigate  the  linear  model  of  the  components.  SEER  uses  the  
multidimensional structure of each group. An application example is given.

Keywords : Linear Regression, Latent Variables, PLS Path Modelling, PLS Regression, Structural  
Equation Models, SEER.

Notations:
Lowercase carolingian letters generally stand for column-vectors (a , b, ... x, y ...) or current index 
values (j , k ... , s , t...).

Greek lowercase letters (α , β,...λ , µ,...) stand for scalars.

<u1, ... , un> is subspace spanned by vectors u1, ... , un.

en stands for the vector in ℝn having all components equal to 1.

Uppercase  letters  generally  stand  for  matrices  (A, B...X, Y...),  or  maximal  index  values 
(J, K...S, T...).

ΠE y =  orthogonal  projection  of  y onto  subspace  E,  with  respect  to  a  euclidian  metric  to  be 
specified.

X being a (I,J) matrix:

xi
j is the value in row i and column j;

xi stands for vector (xi
j)j=1 à J ; xj stands for vector (xi

j)i=1 à I

<X> refers to the subspace spanned by column vectors of X

ΠX  is a shorthand for Π<X>

st(x) = standardized x variable.

a(k) = the current value of element a in step k of an algorithm.

(as)s = column vector of elements as

[as]s = line vector of elements as

A' = transposition of matrix A
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diag(a,...,b): if a,...,b are scalars, refers to diagonal matrix with diagonal elements a,...,b. If a,...,b 
are square matrices, refers to block-diagonal matrix with block-diagonal elements a,...,b.  

<X,...,Z> , where X,...,Z are matrices having the same row number, refers to the subspace spanned 
by column vectors of X,...,Z.

〈 x∣y 〉M is the scalar product of vectors x and y with respect to euclidian metric matrix M.

∥x∥M is the norm of vector x with respect to metric M.

PCk(X,M,P) refers to the kth principal component of matrix X with columns (variables) weighed by 
metric matrix M, and lines (observations) weighed by matrix P.

In E X , M , P = inertia of  (X,M,P) along subspace E.

λ1(X,M,P) = largest eigenvalue of (X,M,P)'s PCA.

Other conventions:
• Variables describe the same set of n observations. Value of variable x for observation i is xi. A 
variable x is identified to a column-vector x=x ii=1 to n∈ℝ

n .

• All variables are taken centred. Moreover, original numerical variables are taken standardized.

• Observation i has weight pi. Let P = diag(pi)i=1 to n.

• Variable space ℝn has euclidian P-scalar product. So, we have:

 〈 x∣y 〉P=x ' Py=cov x , y  .  

• A variable group X containing J variables x1,...,xJ is identified to the (n,J) matrix  X = [x1,...,xJ]. 
From X's point of view, observation i is identified to the ith row-vector xi' of X.

• A variable group X = [x1,...,xJ] is currently "weighed" by a (J,J) definite positive matrix M. This 
matrix acts as an euclidian metric in the observation space ℝJ attached to X. The scalar product 
between observations i and k is: 〈 x i∣xk 〉M=x i ' M xk . 

Acronyms:
IVPCA = Instrumental Variables PCA, also known as MRA

MRA = Multiple Redundancy Analysis, also known as IVPCA 

OLS = Ordinary Least Squares

PC = Principal Component

PCA = Principal Components Analysis

PCR = Principal Component Regression

PLS = Partial Least Squares

PLSPM = PLS Path Modelling

SEER = Structural Equation Exploratory Regression

SE(M) =  Structural Equation (Model)

Bry X., Verron T., Cazes P. (2007): Structural Equation Exploratory Regression

2



Introduction
In this paper, we built up a multidimensional exploration technique that takes into account a single 
equation conceptual model of data: Structural Equation Exploratory Regression (SEER).

The  situation  we  deal  with  is  the  following:  n individuals  are  described  through a  dependant 
variable  group  Y and  R predictor  groups  X1,...,XR.  Each group has  enough conceptual  unity to 
advocate the grouping of its variables apart from the others.  This is  why these groups will  be 
referred to as "thematic groups". For example's sake, consider n wines described through 3 variable 
groups: X1 being that of olfaction sensory variables, X 2 that of palate sensory variables, and Y that 
of hedonic judgments (all variables may for instance be averaged marks given by a jury). Now, 
these groups are linked through a dependency network, just as variables are in an explanatory 
model. This model, called thematic model, may be pictured by a dependency graph where groups Y 
and Xr are nodes and Xr → Y vertices indicate that "the structural pattern exhibited by Y depends, to 
a certain extent and amongst other things, on that exhibited by Xr" (cf. fig. 1). In our example, it is 
not irrelevant to assume that the pattern of  hedonic judgements depends on both olfaction and 
palate perceptions. It must be clear that a Xr → Y vertex means that dimensions in Xr bear a relation 
to  variations  of  dimensions  in  Y,  controlling  for  the  variations  of  dimensions  in  all  other  Xs 

predictor groups. Therefore, we consider relations between groups to be partial relations, and must 
deal with them accordingly.

One  important  feature  of  data  is  that  every  thematic  group  may  contain  several  important  
underlying dimensions,  without us knowing how many and which. What  we need is  a method 
digging out these dimensions. PCA performed separately on each thematic group certainly digs out 
hierarchically ordered and non-redundant principal dimensions in the theme, but regardless of the 
role they may have to play according to the available conceptual model of the situation. What we 
would like is to be able to extract from every theme a hierarchy of dimensions that are reasonably 
"strong in the group" and "fit for the dependency model" (the precise meaning of these expressions 
is given later).

Thus, we stand near the starting point of the modelling process: we have a conceptual model built 
up from qualitative and logical considerations, but this model involves concepts that are fuzzy, 
insofar as they may include several unidentified underlying aspects, each of which may in turn lead 
to miscellaneous measures. This fuzziness bars the way to usual statistical modelling, because such 
modelling requires  that  the  measures  be  conceptually precise  and the  model  parsimonious.  To 
make our way to such a model, we need to explore each theme in relation to the others. This means 
a  multidimensional  exploration  tool  (as  PCA is)  that  seeks  thematic  structures  that  are  linked 
through the conceptual model.

The  purpose  of  SEER has  connexions  to  that  of  the  PLS Path  Modelling  technique  or  more 
generally  Structural  Equation  Estimation  techniques  as  LISREL.  But  there  are  fundamental 
differences, in approach as well as in computation:

-  Unlike PLSPM, SEER really takes partial relations into account in regression models. 

-  Contrary  to  PLSPM  and  LISREL,  SEER  allows  to  extract  several dimensions  in  every 
thematic group (as many as one wishes and the group may provide). This makes it closer to an 
exploration tool than to a latent variable estimation technique. Indeed, latent variables are a 
handy way to model hypothetical dimensions. But, like in PCA, they may be viewed as a mere 
intermediate  tool  to  extract  principal  p-dimensional  subspaces  that  provide  useful  variable 
projection opportunities.  Allowing to visualize the variable correlation patterns on "thematic 
planes", SEER proves helpful in predictor selection.

When there is but one predictor group X, PLS regression digs out strong dimensions in X that best 
model Y. SEER seeks to extend PLS regression to situations where Y depends on several predictor 
groups X1,...,XR. Of course, in such a situation, one could consider performing PLS regression of Y 
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on group X = (X1,...,XR). But doing so would lead to components that may be, first: conceptually 
hybrid  and  second:  constrained  to  be  mutually  orthogonal,  which  may drive  them away from 
significant variable bundles. Both are likely to make components more difficult to interpret.

1. The Thematic Model

1.1. Thematic groups and components

X1,...,  Xr,...,  XR and  Y are thematic groups. Group  Y has  K variables, and is weighed by a (K,K) 
definite positive matrix  N. Group Xr has Jr variables, and is weighed by a (Jr,Jr) definite positive 
matrix Mr.

We assume that every group  Xr (respectively  Y) may be summed up using a given number  J'r 

(respectively K') of components. Let F r
1 , ... , F r

j , ... , F r
J r ' (resp. G1,...,GK') be these components. 

We impose that ∀ j , r  : F r
j∈〈X r 〉 and ∀ k : G k∈〈Y 〉 .

1.2. Thematic model

The thematic model is the dependency pattern assumed between thematic groups. We term it single  
equation model in that there is but one dependant group. It is graphed in figure 1a.

Figure 1a: Single equation thematic model Figure 1b: The univariate case
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When the dependant  group  Y is  reduced to a single variable, we get the particular case of the 
univariate model (fig. 1b).

1.3. General demands

When extracting the thematic components, we have a double demand:

➢ We demand that the statistical model expressing the dependency of  yk's onto the predictor 
components Fr

j's have a good fit;

➢ We demand that a group's components have some "structural strength", i.e. be far from the 
group's residual (noise) dimensions.
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1.3.1. Goodness of fit
It will be measured using the classical R² coefficient. 

1.3.2. Structural strength
• Consider a group of numeric variables:  X = (x1,  ...  ,  xJ) weighed by (J,J) symmetric definite 
positive matrix  M and let u∈ℝJ , with ||u||²M =  u'Mu = 1. Let  F = XMu be the coordinate of 
observations on axis <u>. The inertia of {xi, i = 1 to n} along <u> in metric space ℝJ ,M  is:

∥F∥P
2=F ' P F=u ' MX ' P XMu  

It is one possible measure of structural strength for direction <u> in space ℝJ ,M  . 

• The  possibility  of  choosing  M makes  this  measure  rather  flexible.  Let  us  review important 
examples.

1) If all variables in X are numeric and standardized, the criterion is that of standard PCA. Its 
extrema correspond to principal components.

2) If we do not want to consider structural strength in the group, i.e. consider that all variables in 
<X> are to have equal strength, then we may take M = (X'PX)-1. Indeed, we have then:

∀ u: u '  X ' PX −1 u=1 ⇒ ∥XMu∥P
2=u '  X ' PX −1 X ' PX  X ' PX −1 u=1

This choice leads to take group X as mere subspace <X>.

3) Suppose group X is made of K categorical variables C1, ..., CK. Each categorical variable Ck is 
coded through a matrix  Xk set up, as follows, from the dummy variables corresponding to its 
values: all dummy variables are centred, and one of them is removed to avoid singularity. Now, 
equating M to block-diagonal matrix Diag((Xk'PXk)-1)k=1 to K yields a structural strength criterion 
whose  maximization  leads  to  Multiple  Correspondence  Analysis,  which  extends  PCA  to 
categorical variables.

4)  More  generally, when  group  X is  partitioned  into  K subgroups  X1,...XK,  such  that  inter-
subgroup correlations are of interest, but not within-subgroup correlations, then each subgroup 
Xk is  considered  as  mere  subspace  <Xk>.  Equating  M to  block-diagonal  matrix 
Diag((Xk'PXk)-1)k=1 to K allows  to  neutralize  every  within-subgroup  correlation  structure,  and 
yields a criterion whose maximization leads to generalized canonical correlation analysis. 

2. A single predictor group X: PLS regression

2.1.Group Y is reduced to a single variable y: PLS1

Consider a numeric variable  y and a predictor  group  X containing  J variables and weighed by 
metric M. The component we are looking for is F = XMu. Under constraint u'Mu = 1, ||F||P² is the 
inertia measure of F's structural strength.

2.1.1. Program 
The criterion that is classically maximized under the constraint u'Mu = 1 is:

C1 X ,M , P ; y=〈 XMu∣y 〉P=∥XMu∥P cosP XMu , y ∥y∥P (1)

It leads to the following program:
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Q1 X , M , P ; y : Max
u ' Mu=1

〈XMu∣y 〉P

N.B.: y being standardized, ∥y∥P=1 . Then:

 M = (X'PX)-1 ⇒ ∥XMu∥P=1 ⇒ C1 = cosP  XMu , y .

2.1.2. Solution: rank 1 PLS1 component

L=〈XMu∣y 〉P−

2
u ' Mu−1= y ' P XMu−

2
u ' Mu−1

∂L
∂ u
=0 ⇔ MX ' Py=Mu (2)

(2)  ⇒ XMX ' Py= XMu (3)

(2) ⇒ u=1


X ' Py   and then,  u'Mu = 1 ⇒ =∥X ' Py∥M

We  shall  write RX ,M , P=XMX ' P and  term  R(X,M,P)y «linear  resultant  of  y onto  triplet 

(X, M, P)».  Let u1=Arg Max
u ' Mu=1

〈 XMu∣y 〉P and  F1 =  XMu1,  which  we  shorthand: 

F1 = ArgF Q1(X, M, P;y).  According to (3), component F1 is collinear to RX ,M , P y :

F 1 = 1


R X , M , P  y =
1

∥X ' Py∥M
RX , M , P  y

N.B.  M =  (X'PX)-1 ⇒ RX ,M , P y=X X ' PX −1 X ' Py=X y .  Ignoring  X's  principal 
correlation structures leads to classical regression.

2.1.3. Rank k PLS1 Components
Let generally  Xk be the matrix of residuals of  X regressed onto PLS components up to rank  k : 
F1,...,Fk.  The  rank  k PLS component  is  defined  as  the  component  solution  of  Q1(Xk-1,M,P;y). 
Computing it that way ensures that Fk is orthogonal to F1,...,Fk-1.

2.2. Y contains several dependant variables

Consider  now two variable  groups  X (J variables,  weighed by metric  M)  and  Y (K variables, 
weighed by metric  N). We may want to perform dimensional reduction in  X only (looking for 
component F = XMu) or in both X and Y (then looking for component G = YNv as well).

2.2.1. Dimensional reduction in X only

a) Criterion and Program:
Let {nk}k=1 to  K be a set of weights associated to the K variables in Y and let N = diag({nk}k). Then, 
consider criterion C2:

C2 X , M ;Y , N ; P =∑
k=1

K

nk 〈XMu∣yk 〉P
2 = ∑

k=1

K

nk C1
2 X ,M , P ; yk 

It leads to the following program:

Q2 X , M ;Y , N ; P : Maxu ' Mu=1 C2 X , M ;Y , N ; P
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b) Rank 1 solution:

C2 = u ' MX ' P∑
k=1

K

nk yk yk ' PXMu = u ' MX ' PYNY ' PXMu

N.B. Note that according to this matrix expression of C2, N need not be diagonal. 

L=C2−u ' Mu−1

∂L
∂ u
=0 ⇔ MX ' PYNY ' PXMu=Mu (4)

u'(4) = C2 ⇒ λ is the largest eigenvalue.

X (4) ⇔ RX , M , P RY , N , P F= F  with λ maximum   (5)

2.2.2.  Dimensional reduction in X and Y

a) Criterion and program:
We are now looking for components F = XMu and G = YNv.

The criterion that compounds structural strength of components and goodness of fit is:

C3=〈 XMu∣YNv 〉P=∥XMu∥P ∥YNv∥P cosP XMu ,YNv  (6)

It leads to the program:

Q3 X , M ;Y , N ; P : Max u ' Mu=1
v' Nv=1

〈XMu∣YNv〉P

b) Rank 1 Solutions:
There is an obvious link between programs Q3 and Q1: 

(F,G) = argF,G Q3(X,M;Y,N;P)  ⇔  F = argF Q1(X,M,P;G) and G = argG Q1(Y,N,P;F)   (7)

This leads us to the characterization of the solutions: 

Given v, program Q3(X,M;Y,N;P) boils down to Q1(X,M,P;YNv). Therefore: 

(2) ⇒ MX ' PYNv=Mu (8a)

(8a) ⇒ XMX ' PYNv= XMu ⇔ R X ,M , P G= F (9a)

Symmetrically, given u, program Q3(X,M;Y,N;P) boils down to Q1(Y,N,P;XMu). Therefore:

(2) ⇒ NY ' PXMu= Nv (8b)

(8b) ⇒ YNY ' PXMu=YNv ⇔ RY , N , P F=G (9b)

u'(8a) and v'(8b) imply that λ = µ. Let η = λ² = µ². We have: =v ' NY ' PXMu=C3 , which 
must be maximized.

(9a) and (9b) imply that F and G can be characterized as eigenvectors:

RX , M , P RY , N , P F= F (10a)  ;  RY , N , P RX , M , P G=G (10b)

η being the largest eigenvalue of operators RX,M,PRY,N,P and RY,N,PRX,M,P.

N.B. Component  F's characterization (10a) is none other than (5). So, as far as  F is concerned, 
programs Q2(X,M;Y,N,P) and Q3(X,M;Y,N,P) are equivalent. 
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c) Choice of metrics M and N, and consequences
• When M = I and N = I, we get the first step of Tucker's inter-battery analysis, as well as Wold's 
PLS regression.

• Take M = (X'PX)-1. Program Q3 is equivalent to:

Max∥XMu∥P
2=1

v ' Nv=1

〈 XMu∣YNv 〉P

Correlation  structures  in  X are  no  longer  taken  into  account.  To  reflect  that,  program 
Q3(X,M;Y,N;P) will then be short-handed Q3(<X>;Y,N;P).

In such cases, the method is called Maximal Redundancy Analysis, or Instrumental Variables PCA.

• If we have both M = (X'PX)-1 and N = (Y'PY)-1, we get canonical correlation analysis.

d) Rank 2 and above:
• Our  basic  aim is  to  model  Y using strong dimensions  in  X.  Once the  first  X-component  F1 

extracted, we look for a strong dimension F2 in X that is orthogonal to F1 and may best help model 
Y. To achieve that, we regress X onto F1, which leads to residuals X1. Rank 2 component F2 is then 
sought in X1 so as to be structurally strong and predict Y as well as possible (together with F1 which 
is orthogonal, so that predictive powers can be separated). According to these requirements, one 
wants to solve:

MaxF∑
k=1

K

nk C1
2X 1 ,M ,P ; y k ⇔ Q 3X

1 ,M ;Y , N ; P 

It is easy to see that this approach leads to solving Q3(Xk-1,M;Y,N;P) to compute component Fk.

Hereby, we get dimension reduction in X, in order to predict Y.

• Now,  given  F =  (F1,...,FK),  if  we  also  want  dimension  reduction  in  Y with  respect  to  the 
regression model, we should look for strong structures in Y best predicted using the Fk's. To achieve 
that, we consider the following program:

Q3(<F>;Y,N;P)

Solving the program yields G1. As dimension reduction is now wanted in Y, Y is regressed onto G1, 
which  leads  to  residuals  Y1.  Generally,  Yk-1 being  the  residuals  of  Y regressed  onto  G1,...,Gk-1, 
component Gk will be obtained solving Q3(<F>;Yk-1,N,P).

3. Structural Equation Exploratory Regression
In this section, we review multiple covariance criteria proposed in [Bry 2004], and use them in 
structural equation model estimation.

3.1. Multiple covariance criteria

3.1.1. The univariate case
• Consider the situation described in §1.1 and §1.2. and depicted on fig. 1b. Consider now the 
following criterion:

C4 y ; X 1 , ... , X R = ∥y∥P
2 cos P

2  y ,〈F 1 , ... , F R〉 ∏
r=1

R

∥F r∥P
2
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= cosP
2  y , 〈F1 ,... , F R〉∏

r=1

R

∥F r∥P
2

where:   ∀ r , F r=X r M r ur with ur ' M r ur=1

C4 clearly  compounds  structural  strength  of  components  in  groups  (||Fr||P²)  and  regression's 
goodness of fit  ( cosP

2  y , 〈F1 ,... , F R〉 ).  It  obviously extends criterion (C1)²  to the case of 
multiple predictor groups.

• If  one  chooses  to  ignore  structural  strength  of  components  in  groups  by  taking 
M r= X r ' P X r

−1 ∀ r , we have:

 ∥F r∥P
2=1 ∀ r ⇒ C 4=cos P

2  y ,〈F 1 ,... , F R〉

So, we get back plain linear regression's criterion.

3.1.2. The multivariate case
• If N were diagonal (N = diag(nk)k=1 to K), and dimensional reduction in Y were secondary, we might 
consider the following criterion based on C4:

C5 = ∑
k=1

K

nk C 4 y
k ; X 1 , ... , X R = ∑

k=1

K

nk cos P
2  yk , 〈F1 , ... ,F R〉∏

r=1

R

∥F r∥P
2 (11)

• If we want to primarily perform dimensional reduction in Y as well as in the Xr's, as pictured on 
fig. 1a, we should consider the following criterion:

C6: ∥G∥P
2 cosP

2 G ,〈F 1 , ... , F R〉 ∏
r=1

R

∥F r∥P
2 (12)

where:  G=YNv with v ' Nv=1 ; ∀ r , F r=X r M r ur with ur ' M r ur=1

C6 is a compound of structural strength of components in groups (||Fr||P² and ||G||P²) and regression's 
goodness of fit ( cosP

2 G , 〈F 1 , ... , F R〉  ).

• Once again,  if  one chooses  to ignore structural  strength of  components  in groups by taking 
M r= X r ' P X r

−1 ∀ r and N=Y ' P Y −1 , we have:

 ∥G∥P
2=1 , ∥F r∥P

2=1 ∀ r ⇒ C6=cosP
2 G ,〈F1 ,... , F R〉

3.2. Rank 1 Components

3.2.1. The univariate case

a) A simple case
• Consider figure 3: an observed variable y is dependant upon component F in group X, along with 
other explanatory variables grouped in Z = [z1, ... , zS]. Each zs is taken as a unidimensional group 
having obvious component Fs = zs.
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Figure 3: variable   y   depending on a   X  -component   F   and a   Z   group   

l l l l X

F

xj

l y

l lZ

F is found maximizing the multiple covariance criterion which, in this case, leads to:

Max
F=XMu
u ' M u=1

C4 ⇔ Q4
* y ; X ,M ; Z : Max

F=XMu
u ' M u=1

cos P
2  y ,〈F ,Z 〉∥F∥P

2

Property Π : If one ignores structures in X by taking M=(X'PX)-1, program Q4
* boils down to:

Max
F∈〈 X 〉 ,∥F∥P=1

cos P
2  y ,〈F , Z 〉 

Then, let y X
Z= X

Z y be the X-component of y〈X , Z 〉=〈X , Z 〉 y ; the obvious solution of the 
program is:

F=st  y X
Z 

• Let us rewrite program Q4
*.

cos2 y , 〈F ,Z 〉=〈 y∣ 〈F ,Z 〉 y 〉P= y ' P 〈F ,Z 〉 y

Now, consider figure 4. We have  〈F ,Z 〉 y=Z yZ ⊥ F y .

Figure 4

<F,Z>

y

F

Z

t =ΠZ⊥F

Π<F,Z>y
ΠZ y
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Let t=Z ⊥ F . We have:

 〈F ,Z 〉 y = Z yt y = Z y
〈t∣y 〉P
〈t∣t 〉P

t = Z y t ' Py
t ' Pt

t

Z ⊥ is P-symmetric, so: Z ⊥ ' P=PZ ⊥ . As a consequence:

 〈F ,Z 〉 y = Z y
F 'Z ⊥ ' Py

F 'Z ⊥ ' PZ ⊥ F
Z ⊥ F = Z y

F 'Z ⊥ ' Py
F ' PZ ⊥ F

Z ⊥ F

⇒ y ' P 〈F , Z 〉 y = y ' PZ y
F 'Z ⊥ ' Py
F ' PZ ⊥ F

y ' PZ ⊥ F

⇔ cos2 y , 〈F , Z 〉 = y ' PZ y
F 'Z ⊥ ' Pyy ' PZ ⊥ F

F ' PZ ⊥ F

=
 y ' PZ y F ' PZ ⊥ FF 'Z ⊥ ' Pyy ' PZ ⊥ F

F ' PZ ⊥ F

=
F ' [ y ' PZ y PZ ⊥Z ⊥ ' Pyy ' PZ ⊥ ]F

F ' PZ ⊥ F

So:

C4 = F ' P F
F ' [ y ' PZ y PZ ⊥Z ⊥ ' Pyy ' PZ ⊥ ] F

F ' PZ ⊥ F
 (13)

We can write it:

C4 = F ' P F F ' A y F
F ' B F

, with P, A(y) and B symmetric matrices:

B=PZ ⊥ = P−PZ Z ' PZ −1 Z ' P ; A y  =  y ' PZ y BB ' yy ' B

N.B. When unambiguous, A(y) will be short-handed A. 

Replacing F with XMu, we get the program:

Q4
*  y ; X ,M ; Z  : Max

u ' M u=1
u ' MX ' P XMu u ' MX ' AXMu

u ' MX ' BXMu

• Let us now try to characterize the solution of Q4
*(y;X,M;Z). 

L= u ' MX ' P XMu u ' MX ' AXMu
u ' MX ' BXMu

−u ' Mu−1

∂L
∂ u
=0 ⇔ u MX ' Au MX ' P−u uMX ' B  XMu = Mu (14)

with:   u=u ' MX ' AXMu
u ' MX ' BXMu

; u = u ' MX ' P XMu
u ' MX ' BXMu

Notice that β(u) and γ(u) are homogeneous functions of u with 0 degree.

Besides, let us calculate u'(14) and use constraint u'Mu = 1, which gives:
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u ' u MX ' AuMX ' P−uuMX ' B  XMu = 

⇔ uu ' MX ' AXMuuu ' MX ' PXMu−u uu ' MX ' BXMu = 

⇔  = u ' MX ' P XMu u ' MX ' AXMu
u ' MX ' BXMu

= C4

As a consequence, λ must be maximum.

To characterize directly component F = XMu, we calculate:

X (14)  ⇔ u  XMX ' Au XMX ' P−u u XMX ' B  XMu =  XMu

⇔ XMX ' F AF  P− F F B F = F (15)

with F = F ' AF
F ' BF

; F = F ' PF
F ' BF (16)

N.B.1: These coefficients are homogeneous functions of  F with 0 degree, which allows to seek 
solution F of (15) sparing a multiplicative constant.

N.B.2:  It  is  easy  to  show  that  at  the  fixed  point,  β and  γ receive  interesting  substantial 
interpretations:

F r=
F r ' PF r

F r ' BF r
=

∥F r∥P
2

∥〈 F s , s≠r 〉⊥ F r∥P
2 =

1
cos2F r , 〈F s , s≠r 〉 

Besides:

F r=
F r ' AF r

F r ' BF r
=

F r ' [ y ' P 〈F s , s≠r 〉 y P〈 F s , s≠r 〉⊥ 〈F s , s≠r 〉⊥ ' Pyy ' P〈F s , s≠r 〉⊥] F r

F r ' P〈 F s , s≠r 〉⊥ F r

=
 y ' P 〈F s , s≠r 〉 y F r ' P 〈F s , s≠r 〉⊥ F rF r ' 〈F s , s≠r 〉⊥ ' Py 2

F r ' P 〈F s ,s≠r 〉⊥ F r

=  y ' P 〈F s , s≠r 〉 y 
F r '〈 F s , s≠r 〉⊥ ' Py2

F r ' P 〈F s , s≠r 〉⊥ F r

= ∥〈F s , s≠r 〉 y∥P
2
〈 〈F s , s≠r 〉⊥ F r∣y 〉P

2

∥〈F s , s≠r 〉⊥ F r∥P
2

= ∥〈F s , s≠r 〉 y∥P
2∥ 〈〈 F s , s≠r 〉⊥ F r 〉

y∥P
2 = ∥〈F s , s≠r 〉〈〈 F s , s≠r 〉⊥ F r〉

y∥P
2 = ∥〈F s , s≠r 〉〈F r〉

y∥P
2

= ∥〈F s , s=1 to R 〉 y∥P
2

= cos²(y ; <Fr , r = 1 to R>) if y is standardized

• As coefficients γ and β depend on the solution, it is not obvious to solve analytically equations 
(15) and (16) where λ is maximum. As an alternative, we propose to look for Q4

*'s solution as the 
fixed point of the following algorithm:
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Algorithm A0:

Iteration 0 (initialization):

- Choose an arbitrary initial value F(0) for F in <X>, for example one of X's columns, or 
X's first PC. Standardize it.

Current iteration k > 0:

- Calculate coefficients  γ = γ (F(k-1)) and β = β (F(k-1)) through (16).

- Extract the eigenvector f associated with the largest eigenvalue of matrix:

 XMX '  A P− B 

- Take F(k) = st(f)

- If F(k) is close enough to F(k-1), stop.

This algorithm has been empirically tested on matrices exhibiting miscellaneous patterns. It has 
shown rather quick convergence in most cases (less than 30 iterations to reach a relative difference 
between two consecutive values of one component lower than 10-6).

b) The general univariate case
The program to be solved in the general case is:

Q4: Max
∀ r : ur ' M r ur=1

C 4 ⇔ Max
∀ r : ur ' M r ur=1

cos P
2  y ,〈F 1 , ... , F R〉 ∏

r=1

R

∥F r∥P
2

where: ∀ r ,F r=X r M r ur

We  propose  to  maximize  the  criterion  iteratively  on  each  Fr component,  taking  all  other 
components {Fs  , s ≠ r} as fixed and using algorithm A0. So, we get the following algorithm:

Algorithm A1:

Iteration 0 (initialization):

- For r = 1 to R: choose an arbitrary initial value Fr(0) for Fr in <Xr>, for example one of 
Xr's columns, or Xr's first PC. Standardize it.

Current iteration k > 0:

- For r = 1 to R: set Fr(k) = Fr(k-1)

- For r = 1 to R: use algorithm A0 to compute Fr(k) as the solution of program:

Q4
*(y;Xr,Mr;[Fs(k)  , s ≠ r])

- If ∀r, Fr(k) is close enough to Fr(k-1), stop.

3.2.2. The multivariate case

a) A simple case
Consider now y1,..., yK standardized, and suppose they depend upon F = XMu together with other 
predictors z1, ... , zS considered each as a unidimensional group as in §3.2.1. Let Z = [z1, ... , zS]. 
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Use of criterion C5:

Let N = diag(nk)k=1 to K. In this case:

C5 = ∥F∥P
2 ∑

k=1

K

nk cosP
2  yk , 〈F , Z 〉

From (13) we draw:

C5 =
F ' PF
F ' BF ∑k=1

K

nk F ' A yk  F = F ' PF
F ' BF

F ' AF with: A=∑
k=1

K

nk A y k 

As a consequence, algorithm A0 may be used to solve program:

Q5
*Y , N ; X ,M ;Z : Max

F=XMu , u ' Mu=1
∥F∥P

2 ∑
k=1

K

nk cosP
2  yk , 〈F , Z 〉

Expression of matrix A:

A y k = yk ' PZ y k PZ ⊥Z ⊥ ' Pyk yk ' PZ ⊥

⇒ A=∑
k=1

K

nk A y k =PZ ⊥∑
k=1

K

nk  y
k ' PZ yk Z ⊥ ' P ∑k=1

K

nk yk yk 'PZ ⊥

=PZ ⊥∑
k=1

K

nk  y
k ' PZ yk Z ⊥ ' P YNY ' PZ ⊥

 yk ' PZ yk =tr  yk ' PZ y k=tr  yk yk ' PZ 

So: ∑
k=1

K

nk  y
k ' PZ yk  = tr ∑

k=1

K

nk y k y k ' PZ  = tr YNY ' PZ 

And: A = PZ ⊥ tr YNY ' PZ Z ⊥ ' P YNY '  PZ ⊥

Use of criterion C6:

• Let us show that maximizing C5 and C6 do not lead to the same F-solution. Let us rewrite both 
criteria in our simple case: 

C5 = ∥F∥P
2 ∑

k=1

K

nk cosP
2  yk , 〈F , Z 〉 = ∥F∥P

2 ∑
k=1

K

nk 〈 yk∣F , Z yk 〉P

= ∥F∥P
2∑

k=1

K

nk tr  yk ' PF , Z yk  = ∥F∥P
2 tr ∑

k=1

K

nk yk yk ' PF , Z 

= ∥F∥P
2 tr YNY ' PF , Z  (17)

Whereas:

C6: ∥G∥P
2 cosP

2 G ,〈F , Z 〉 ∥F∥P
2 = ∥F∥P

2 〈G∣ F , Z G〉P

= ∥F∥P
2 v ' N ' Y ' PF , Z YNv (18)

From (18) we know that, given F, program: Max
v ' Nv=1

C6 has a G solution characterized by:

NY ' PF , Z YN v = Nv (19)
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Y(19)  ⇔  YNY'PΠF,Z G = η G

v'(19) ⇒  = v ' N ' Y ' PF , Z YN v = C6 maximum

So: C6F  = ∥F∥P
2 F  (20)

where η(F) is the largest eigenvalue of YNY'PΠF,Z

When there is no  Z  group,  YNY'PΠF has rank 1, and its trace is also its only non 0 eigenvalue 
which, being positive, is its largest one. So both criteria boil down to the same thing. But when 
there is a group Z, they no longer coincide. Of course, maximizing either criterion might possibly 
lead to the same F component; in appendix 1, we show that it does not. 

• We think that, in a multidimensional regressive approach, C5 should be preferred to C6, because 
the aim is to obtain, first, thematic dimensions that may help predict group Y as a whole. Only then 
arises the secondary question of which dimensions in Y are best predicted.

b) The general case

C5 = ∑
k=1

K

nk cosP
2  yk ,〈F 1 , ... , F R〉 ∏

r=1

R

∥F r∥P
2

Q5 : Max
∀r : F r=X r M r ur ;ur ' M r ur=1

∑
k=1

K

nk cos P
2  yk , 〈F1 , ... ,F R〉∏

r=1

R

∥F r∥P
2

We shall simply use an algorithm maximizing C5 on each Fr in turn:

Algorithm A2:

Iteration 0 (initialization):

- For r = 1 to R: choose an arbitrary initial value Fr(0) for Fr in <Xr>, for example one of 
Xr's columns, or Xr's first PC. Standardize it.

Current iteration k > 0:

- For r = 1 to R: set Fr(k) = Fr(k-1)

- For r = 1 to R: use algorithm A0 to compute Fr(k) as the solution of program:

 Q5(Y,N;Xr,Mr;[Fs(k)  , s ≠ r])

- If ∀r, Fr(k) is close enough to Fr(k-1), stop.

3.3. Rank k Components

When  we  have  more  than  one  predictor  group,  a  problem  appears  of  hierarchy  between 
components.  Indeed, within a predictor group, the components must be ordered as they are for 
instance in PLS regression, but how should we relate the components between predictor groups? 
The  solution  that  seems  to  us  most  consistent  with  regression's  proper  logic  is  to  calculate 
sequentially (as in PLS) each predictor group's components  controlling for all those of the other  
predictor groups. This implies that we state, ab initio, how many components we shall look for in 
each predictor group. 
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3.3.1. Predictor group component calculus

Let Jr be the number of components F r
1 , ... , F r

J r  that are wanted in group Xr. We shall use the 
following algorithm, extending algorithm A2:

Algorithm A3:

Iteration 0 (initialization):

- For r = 1 to R and for j = 1 to Jr: set Fr
j's initial value Fr

j(0) as Xr's jth PC. Standardize it.

Current iteration k > 0:

- For r = 1 to R: set Fr(k) = Fr(k-1).

- For r = 1 to R: 

For j = 1 to Jr:

Let Xr
0(k) = Xr and, if j > 1: X r

j−1k =〈 F r
1k  ,... , F r

j−1 k 〉 ¿ X r .

Let ∀ s , m: F sm=[F s
1m  , ... , F s

J s m ] .

Use algorithm A0 to compute Fr
j(k) as the solution of program:

 Q5
*(Y,N;Xr

j-1(k),Mr;[{Fs(k)  , s ≠ r}∪{Fr
h(k)  , 1 ≤ h ≤ j-1}]) 

- If ∀r,j  Fr
j(k) is close enough to Fr

j(k-1), stop.

Consider  J'1 ≤ J1 , ... , J'R ≤ JR . Let  M J 1 ' ,... , J R '  = [[F r
j]1≤ j≤J r ' ]1≤r≤R . The component-

set - or model - M J 1 , ... , J R produced by algorithm A3 contains sub-models. A sub-model is 
defined by any ordered pair (r, J'r) where 1 ≤ r ≤ R and J'r ≤  Jr, as:

SM r , J r '  = M J 1 ,... , J r−1 , J r ' , J r1 ... , J R

The set of all sub-models is not totally ordered. But we have the following property, referred to as 
local nesting: 

Every  sequence  SM(r,.)  of  sub-models  defined  by SM r , . = SM  r , J r ' 0≤J r '≤J r
is 

totally ordered through the relation:

SM r , J r ' ≤SM r , J r * ⇔ J r '≤J r *

This order may be interpreted easily,  considering that the component  Fr
j making the difference 

between  SM(r,j-1)  and its  successor  SM(r,j)  is  the  X-component  orthogonal  to  [Fr
1,...,Fr

j-1]  that 
"best" completes model SM(r,j-1) (as meant in PLS) controlling for all other predictor components  
in SM(r,j-1).

3.3.2. Predictor group component backward selection

• Let model M = M(j1 , ... , jR). When we remove predictor component F r
jr , going from model 

M to its sub-model SMr = SM(r,jr-1), criterion C5 is changed so that:

C5M 
C 5SM r

= ∥F r
jr∥P

2
∑

k
cosP

2  yk ,〈M 〉

∑
k

cosP
2  y k , 〈SM r〉 
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But, to make norms ∥F r
jr∥P

2  comparable between groups, one should standardize all Xr's inertia 
momenta  using a proper weighting.  For instance, ∥F r

jr∥P
2 might  be divided by  In(Xr,Mr,P)  or 

alternatively by λ1(Xr,Mr,P), so that its upper bound would be 1 for every group.

• Practically, to select components in  Xr's, one may initially set every  Jr to a value that is "too 
large", and then remove group components through the following backward procedure: 

On current step m, having current model M=M  j1 ,... , jR where ∀ r ,1≤ j r≤ J r : 

- Find s, such that:

s = Arg Min
r r∥F r

jr∥P
2

∑
k

cosP
2  yk , 〈M 〉

∑
k

cosP
2  yk , 〈SM  r , jr−1〉 

with r=
1

In  X r ,M r , P 
or r=

1
1 X r ,M r , P 

- Set js = js - 1 and rerun the estimation procedure. 

3.3.3. Calculating the dependent group components
Now, given the components in predictor groups: F = M J 1 , ... , J R , we may want to achieve 
dimension reduction in Y with respect to the regression model. Let us proceed as in section 2.2.2.d, 
and look for strong structures in Y using the program of (Y,N,P)'s MRA onto <F>:

Q3(<F>;Y,N;P)

Solving the program yields  G1.  Generally,  Yk-1 being the residuals of  Y regressed onto  G1,...,Gk-1, 
component Gk will be obtained solving Q3(<F>;Yk-1,N,P).

3.4. Starting from C6: an alternative 

What we want to do now is to perform dimension reduction in Y and the Xr's "at the same time". 
This means that the components  G in  Y and  Fr in the  Xr's  are co-determined through a unique 
criterion maximization.

3.4.1. One component per thematic group
Supposing we want a single component in each thematic group. Let us look back at criterion C6:

C6: ∥G∥P
2 cosP

2 G ,〈F 1 , ... , F R〉 ∏
r=1

R

∥F r∥P
2

We shall  use the same approach as for  C5's maximization, i.e. iteratively maximize  C6 on each 
component in turn:

- Given G and F1, ..., Fr-1, Fr+1, ..., FR:

Max
F r=X r M r ur

ur ' M ru r=1

C6 ⇔ Max
F r=X r M r ur

ur ' M r ur=1

∥G∥P
2 cosP

2 G ,〈F1 ,... , F R〉∥F r∥P
2

This Q4
*-type program is solved through algorithm A0.

- Given F = [F1, ..., FR]:
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Max
G=YNv
v ' Nv=1

C6 ⇔ Max
F r=X r M r ur

ur ' M r ur=1

∥G∥P
2 cosP

2 G , 〈F 〉 ⇔ Q3Y , N , P ; 〈F 〉

The G solution is the rank 1 component of (Y,N,P)'s MRA onto <F>.

Finally, we get the following algorithm:

Algorithm B1:

Iteration 0 (initialization):

- For r = 1 to R: choose an arbitrary initial value Fr(0) for Fr in <Xr>, for example one of 
Xr's columns, or Xr's first PC. Standardize it.

- Choose an arbitrary initial value G(0) for G in <Y>, for example one of Y's columns, or 
Y's first PC. Standardize it.

Current iteration k > 0:

- Calculate F(k) = [F1(k), ..., FR(k)] as follows:

- For r = 1 to R: set Fr(k) = Fr(k-1).

- For r = 1 to R: use algorithm A0 to compute Fr(k) as the solution of program:

 Q4
*(G;Xr,Mr;[Fs(k)  , s ≠ r])

- Calculate G(k) as the G-solution of:

Q3(Y,N,P;<F(k)>)

- If  G(k) is close enough to G(k-1) and ∀r, Fr(k) to Fr(k-1), stop.

3.4.2. Several components per thematic group
What  if  we  want  Jr components  in  group  Xr and  L components  in  group  Y?  Again,  we  may 
conveniently consider the local nesting approach to extend the rank 1 algorithm B1 of section 
3.4.1. Having to deal with several components in  Y, we shall consider them as a new dependant 
variable group on each step, and use criterion  C5 to find predictor components that best predict 
them. Thus, we get:

Algorithm B2:

Iteration 0 (initialization):

- Set all Fr
j's initial values to those given using algorithm A2. 

Let F(0) = [[Fr
j(0)]r]j .

- Set all Gl's initial values to those calculated as in section 3.3.3.:

 Gl(0) is the solution of Q(<F(0)>;Yl-1,N,P).

Current iteration k > 0: 

Let: G(k-1) = [Gl(k-1)]l = 1 to L  

∀ s , m: F sm =[F s
1m , ... , F s

J s m ]

∀m: F m=[F 1m ,... , F Rm]
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- For r = 1 to R: 

For j = 1 to Jr:

Set Fr
j(k) = Fr

j(k-1).

- For r = 1 to R: 

For j = 1 to Jr:

Let Xr
0(k) = Xr. If j > 1, let X r

j−1k =〈 F r
1k  ,... , F r

j−1 k 〉 ¿ X r .

Use algorithm A0 to compute Fr
j(k) as the solution of program:

 Q5
*(<G(k-1)>;Xr

j-1(k),Mr;[Fs(k)  , s ≠ r])

- For l = 1 to L: 

Let Y 0(k) = Y, and if l > 1: Y l−1k = 〈G 1k  ,... ,G l−1k 〉 ¿Y .

Compute Gl(k) as the G-solution of:

Q3(Yl-1,N,P;<F(k)>)

- If ∀l, Gl(k) is close enough to Gl(k-1) and ∀r,j  Fr
j(k) to Fr

j(k-1), stop.

4. Compared applications of PLS and SEER

4.1. Data and goal

100 french cities have been described from various points of  view through numeric variables1, 
which may be thematically structured as shown in table 1:

Table 1: variables describing the french towns
Theme Sub-theme Variable label Variable description

demographic
dynamics

PopGrowth Population growth rate

Ageing Nr of over 75 / Nr of below 20 (in 1999)

PopAttract Population  attraction  rate  (nr  of  immigrants  on 
1990-1999 over population in 1999)

ActivePopAttract Active  population  attraction  rate  (nr  of  active 
immigrants on 1990-1999 over population in 1999)

Economy Work Unemployt Unemployment rate

YouthUnemployt Unemployment rate of the <25yrs

LongUnemployt % of those unemployed for > 1yr

VarJobCreat Annual variation of the nr of jobs created in a year

Activity Pct of active population

FemActivity Pct of women in active population

ActiveInCity Pct of active population working in the city

1 Source: Le Point - issue nr 1530 - 11/01/2002
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Theme Sub-theme Variable label Variable description

CieFailures Pct of failures in companies created in a year

AvgWage Average yearly net wage

Wealth IncomeTax Average amount of the income tax

WealthTax Pct of taxpayers having to pay the wealth tax

Taxpayers Pct of persons having to pay the income tax

Cost of living: SquaMeter Average cost of 1 m² in ancient lodgings

InhabDuty Average amount of the inhabited house duty

RealEsTax Average amount of the real estate tax

WaterM3 Cost of the water cubic meter

Housing Owners Pct of house owners

House4rooms Pct of houses having 4 rooms or more

HouseInsal Pct of insalubrious houses

HouseVacant Pct of vacant houses

HouseNewBuilt Nr of houses started in 2000 over total nr of houses

Risks Crime, road Criminality Criminality  rate  (nr  of  crimes  and  offences  per 
capita)

CrimVar Criminality rate variation (%)

RoadRisk Nr of  inhabitants  killed  or  injured  owing to  road 
traffic in 2000

Health MortInfant Infant  Mortality  Rate  (nr  of  children  deceased 
before 1 yr over nr of living births)

MortLungCancer Standardized lung cancer-related Mortality Rate

MortAlcohol Standardized alcohol-related Mortality Rate

MortCorThromb Standardized coronary thrombosis-related Mortality 
Rate

MortSuicide Standardized suicide-related Mortality Rate

Environmental  
risks

Floods Nr of floodings between 1982 and 2001

PollutedLand Nr of polluted tracts of land

IndustRisk Nr of factories classified 1 on the Seveso scale

Educational  
risks

SchoolDelay1 Pct  of  children  beyond  age  in  the  first  year  of 
secondary school

SchoolDelay4 Pct  of  children  beyond  age  in  the  fourth  year  of 
secondary school

SchoolDelay7 Pct of children beyond age in the seventh and last 
year of secondary school

Resources Natural SeaSide Sea side less than two hours far by car

Ski Ski resort less than two hours far by car

Sun Annual duration of sunshine

Rain Annual nr of days with precipitation over 1mm

Temperature Average annual temperature from 1961 to 1990

Walkers Pct of employed going to work on foot
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Theme Sub-theme Variable label Variable description

Cultural Museums Nr of museums

Cinema Nr of cinema entries per inhabitant in 2000

Monuments Nr of listed historical monuments

BookLoan Nr of loaned books per inhabitant in 2000

Restaurants Nr of restaurants graded with at least one star in the 
Michelin guide in 2001

Press Nr of magazine issues sold per inhabitant in 2000

Students Pct of students in population

PrimClassSize Average size of primary school classes

What  we want  to  achieve is  to  quickly,  efficiently and understandably relate  the demographic 
dynamics to structures in the other themes. We shall first try a non-thematic approach and then our 
SEER thematic approach, and see if the use of a thematic model helps. The question naturally 
arises of which thematic model to choose. One may have a substantial socio-economic theory to 
back a specific thematic model, as in current structural equation modelling. But for want of such a 
theory,  one may find reasonable to start  with a rather "poor" conceptual  model,  and gradually 
refine it by taking into account the empirical findings provided by its SEER-estimation, in so far as 
these structural facts may receive satisfying conceptual interpretation. It is all the more necessary to 
proceed that way as conceptual partitioning is far from univocal. 

4.2. Local nesting PLS regression (LN-PLS2)

Initially,  we  wanted  to  use  standard  PLS2  analysis  as  non-thematic  technique  -  taking  the 
demographic dynamics as dependant group, and all other groups merged into one as the predictor 
group (the conceptual model can be seen in appendix 2, fig. 2a). But as PLS2 gives correlated 
components in the dependant group Y, it makes graphing of Y awkward. Of course, there exists a 
variant  of  PLS2  dealing  with  groups  X and  Y identically2 and  thus  yielding  uncorrelated 
components in both of them, but the nesting of components would still be different in this variant 
and in SEER, making their results theoretically impossible to compare. Therefore, we chose to 
perform our local nesting variant of PLS2 analysis: LN-PLS2, which is merely what SEER boils 
down to when there is but one predictor group.

As shown by figure 5, demographic variables are very well projected on plane (G1,G2). Component 
G2 is highly correlated with population growth rate. Component  G1 is positively correlated with 
ageing on one hand, and  attraction rates on the other. Yet, as these are uncorrelated,  G1 is less 
clearly interpretable than G2.

Dependant plane (G1 , G2):
The R² column in table 2 shows that prediction of G2 and population growth is poor, whereas that 
of  G1 and associated variables is much better. Components  F1 and  F3 appear to be important to 
predict ageing, and F2 and F4 to predict population attraction.

2 Canonical  PLS [Tenenhaus 1998];  note that  this symmetric  PLS variant  departs from the initial  non-symmetric 
approach, which was to model Y through X.
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Figure 5: Demographic Plane (G  1  ,G  2  )  
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Table 2: Goodness of fit and  importance of LN-PLS2 predictor components

Modelling:
R² F1 F2 F3 F4 F5 F6

G1 .634 .393 *** .569 *** -.320 *** -.168 ** .153 *

G2 .205 .312 ** -.225 *

PopGrowth .118 -.286 **

Ageing .539 .513 *** -.403 *** .187 **

PopAttract .442 .578 *** -.292 ***

ActivePopAttract .534 .657 *** -.298 ***

P-value coding: 0 <'***' <0.001 <'**' <0.01< '*' <0.05 <' ' <1 

N.B:  Standard  linear  model  P-value  has  been  used  to  measure  the  importance  of  predictive  
components. It is of course not possible to view this indicator as a proper P-value, since predictive 
components here are not exogenous. This also goes for all subsequent similar tables.

Let us now see whether F-components may easily receive interpretation.
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Predictor components planes:

Plane (F1 , F2):

Figure 6: Predictor plane (F  1  ,F  2  )  
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Figure 6 shows that  components  F1 and  F2 are not  separately interpretable,  whereas there is a 
clearly  interpretable  direction  in  plane  (F1 , F2):  that  of  wealth / activity.  Figure  7  shows  that 
components  F3 and  F4 are  poorly  correlated  to  any  predictor.  This  lack  of  interpretation  of 
predictive components means failure of the PLS2-type non-thematic method for our exploratory 
modelling purpose. 

Plane (F3 , F4):

Figure 7: Predictor plane (F  3  ,F  4  )  
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4.3. SEER

4.3.1. Rough thematic model of the data
Our  initial  thematic  model  must  be  rather  gross,  yet  conceptually  defendable.  Thus,  we  first 
partition predictors into three explanatory themes:  Economy, Risks,  Resources (see table 1 and 
appendix 2, fig. 2b).

To  merely  have  a  comparison  basis  for  SEER,  let  us  first  perform  "Thematic"  Principal 
Components Regression. We extract the first two PCs of each theme: let G1 and G2 be those of the 
dependant theme  Y, and  Fr

1 and  Fr
2 those of explanatory theme  Xr. Then G1,  G2  and all  yk 's are 

regressed onto {Fr
1 , Fr

2 }r = 1 to 3. Table 3 gives the goodness of fit (R²) of each model.

Table 3:  Thematic PCR goodness of fit (3 themes model)
R²

G1 .303

G2 .272

PopGrowth .067

Ageing .298

PopAttract .375

ActivePopAttract .417

4.3.2. SEER Results
Now, SEER is performed using the rough thematic model.  Two components  are extracted  per 
theme. Convergence threshold for a unit  norm vector was set to 10-9.  Convergence was always 
reached in less than 30 iterations.

Dependant plane (G1 , G2):
Figure 8 shows that plane (G1,G2) is very similar to that of LN-PLS2 (cf. figure 5).

Figure 8: Demographic Plane (G  1  ,G  2  )  
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The  R²  column  in  table  4  shows  that,  compared  to  Thematic  PCR,  SEER  has  significantly 
improved model adjustment, except for population growth whose prediction is poor (R² = 0.07) for 
both techniques. Prediction of ageing is much better (R² = 0.42), and that of population attraction 
rates is relatively good (R²=0.61). The first two economic components  F1

1 and F1
2, together with 

the first  risk-component  F2
1 appear to be important to predict  population attraction, and only the 

first risk-component F2
1 together with the first resource-component F3

1 to predict ageing.

Table 4: Goodness of fit and  importance of SEER predictor components (3 themes model)
R² F1

1 F1
2 F2

1 F2
2 F3

1 F3
2

G1 .516 .400 *** -.629 *** .509 *** -.265 ** -.193 *

G2 .370 -.545 **

PopGrowth .070 .240 *

Ageing .417 .265 * .375 *** -.652 ***

PopAttract .608 .430 *** -.589 *** .376 *** .180 *

ActivePopAttract .608 .521 *** -.556 *** .353 *** -.181 *

P-value coding: 0 <'***' <0.001 <'**' <0.01< '*' <0.05 <' ' <1  

Predictor components planes:
Economic Plane (F1

1 , F1
2):

Figure  9  exhibits  two  easily  interpretable  economic  components.  F1
1 is  a  wealth/activity 

component,  the  only  structural  direction  dug  up  by  LN-PLS2.  F1
2 looks  close  to  a  housing 

component,  which  has  a  negative  partial  effect  on  population  attraction,  which  means  that, 
controlling for everything else, towns with higher attraction rates have more vacant houses and a 
lower percentage of people owning their house. 

Figure 9: Economic predictor plane (  F  1
1     ,     F  1

2  )  
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Risk Plane (F2
1 , F2

2):

Figure 10 exhibits a clear and interesting pattern: that of two distinct variable bundles which are 
also conceptually apart: one of social risks (school delays, criminality), and one of mortality risks 
owing to diseases related to alcohol and tobacco. First component F2

1 being negatively correlated to 
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both bundles, it may be interpreted as a global security component. Its partial effect on population 
attraction is positive (cf. table 4). Yet, through its intermediate position, this component clearly 
appears to be an unsatisfactory compromise between two distinct risk structures. This pleads in 
favour of splitting the risk theme into two sub-themes: that of social risks and that of sanitary risks. 
We can see here all the benefit of graphing the themes in explanatory component planes: it allows 
to investigate their structure from an explanatory viewpoint, and further refine the thematic model 
appropriately.

Figure 10: Risk plane (  F  2
1     ,     F  2

2  )  
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Resource Plane (F3
1 , F3

2):

Figure 11 also exhibits a two-bundle structure in the resource theme, but this time, each of the first 
two components matches a bundle. F3

1 is a climatic component opposing warm and sunny towns to 
cold and  rainy ones.  F3

2 is  a  cultural  component  pointing at  monuments,  museums and luxury 
restaurants. On the town plane, we notice the peculiar situation of Paris, which alone may account 
for  the  second component.  Indeed,  here  is  a  second benefit  of  thematic  planes:  they allow to 
explore  the  individuals'  thematic  structure  with  respect  to  the  explanatory  model.  It  appears 
necessary to later remove Paris from the data, or better, to replace the original variables by the 
corresponding rank variables, in order to shrink the influence of outliers. For the time being, it is 
not necessary to split the theme into two sub-themes (one of natural resources and one of cultural 
resources), since each of the two structures is satisfactorily reflected by a component. According to 
table 4, the effect of these components on population attraction are weak, but the partial effect of 
F3

1 on ageing is important, and negative: warmer climes are linked to older populations, controlling 
for all other predictive components.
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Figure 11: Resource plane (  F  3
1     ,     F  3

2  )  
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4.3.3. Refining the thematic model
Splitting the Risk-theme into two sub-themes (social risk and health risk), we get a 4 theme-model 
(graphed  in  appendix  2,  fig.  2c).  The  SEER  estimation  of  this  model  does  not  change  the 
conclusions regarding the economy and resource factors (cf. fig. 13 and 16). But the risk factors are 
now twofold: as shown on figures 14 and 15, we now have a social risk component (F2

1) as well as 
a health security component (F3

1). According to table 5, the social risk component F2
1 appears not 

to  be  clearly  partially  correlated to  population  attraction,  whereas  the  health  security  is  (with 
positive effect). On the other hand, F2

1  is partially positively correlated to ageing: school delay is 
marginally more important in areas with older populations. 

Figure 12: Demographic Plane (G  1  ,G  2  )  
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Table 5: Goodness of fit and  importance of SEER predictor components (4 themes model)
R² F1

1 F1
2 F2

1 F2
2 F3

1 F3
2 F4

1 F4
2

G1 .528 .397 *** -.547 *** -.244 ** .181 * -.363 *** -.213 * -.236 ** -.185 *

G2 .383 -.586 ***

PopGrowth .126 .347 **

Ageing .426 -.259 * .290 ** -.630 ***

PopAttract .607 .427 *** -.477 *** .214 ** .371 *** .260 **

ActivePopAttract .610 .533 *** -.457 *** .160 * .280 ** -.190 * -.167 *

P-value coding: 0 <'***' <0.001 <'**' <0.01< '*' <0.05 <' ' <1 

Figure 13: Economic predictor plane (  F  1
1     ,     F  1

2  )  
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Figure 15: Health risk plane (  F  3
1     ,     F  3

2  )  
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4.4. Conclusion: comparing PLS and SEER
Local nesting of components has allowed us to build models nested in an understandable way. This 
is imperative if one wants to produce multidimensional graphs of every variable group in relation 
to a model linking groups. Having a dependent group and a predictor one, we may then partition 
the latter thematically (SEER), or not (LN-PLS2). Compared to non-thematic LN-PLS2, the use of 
gradually  refined  thematic  models  has  helped  a  good  deal  in  outlining  possibly  important 
explanatory factors. SEER components are naturally easier to interpret, for three main reasons:

➢ Each component being local to a thematic subspace, it has conceptual unity.
➢ Components are constrained to be uncorrelated within each theme, but not between themes. 

Thus, they gain freedom to better adjust structures in themes. 
➢ Thematic planes allow clearer vision of thematic structures, thus allowing to sub-partition 

themes according to noticeable substructures.
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Appendix 1

Maximizing C5 or C6 does not lead to the same component.

The situation we are dealing with is that pictured on fig. 3. Let us consider the particular case 
where M = (X'PX)-1 and see what becomes of the two maximizations.

● Max C5:

Max
F∈〈X 〉

C5 ⇔ Max
F∈〈X 〉

tr YNY ' PF , Z 

tr YNY ' PF , Z  = tr YNY ' PF , Z
2  = tr F , Z YNY ' PF ,Z 

= tr F , Z YN F , Z Y  ' P  = tr  Y F , Z N Y F , Z ' P (1)

where : Y F , Z=F , ZY  

So: tr YNY ' PF , Z  = In〈F ,Z 〉 Y , N , P  (2)

Besides: F∈〈 X 〉 ⇔ F=Xb

And: F=Z FZ ¿ F

So: 〈F , Z 〉 = 〈Z¿ F , Z 〉 = 〈Z ¿ X b ,Z 〉 = 〈Z¿ X b〉⊕〈Z 〉 (3)

From (2) and (3), and 〈Z¿ X b〉⊥〈Z 〉 , we draw:

tr YNY ' PF , Z  = In〈Z¿ X b〉 Y , N , PIn〈Z 〉 Y , N , P

Let: X Z = Z¿ X

In〈 Z 〉Y , N , P  being constant:

Max
F∈〈X 〉

tr YNY ' PF ,Z  ⇔ Max
b∈ℝ J

In 〈 X Z b 〉Y , N , P 

This latter program is none other than that of MRA (i.e. IVPCA) of (Y,N,P) onto  〈 X Z 〉 . So, 
solution F is Xb with X Z b being the first component of this MRA.

Let us now consider a very simple case, pictured on fig. 1, where X = {x1, x2} with x1⊥ x2, and Z = 
{z}, with z ⊥ X. We obviously have then: X Z = Z¿ X = X . So, F is the first component 
of  MRA of (Y,N,P) onto X. Now, let Y = {y1, y2, y3} with y1 =  x1 and y2 = y3 = z + εx2 , where ε ≈ 0, 
and  N = I. MRA of (Y,I,P) onto  X is PCA of (ΠXY,I,P). But  ΠXY = {x1, εx2, εx2  }. So this PCA 
leads to F = x1.

Bry X., Verron T., Cazes P. (2007): Structural Equation Exploratory Regression

30



Figure 1

z

<X>
x2

y1=x1

y2=y3

● Max C6:

Max
F∈〈 X 〉

C6 ⇔ Max
F∈〈 X 〉

1YNY ' PF , Z 

where λ1(Ω) denotes the largest eigenvalue of operator Ω. 

YNY ' PF , Z u = u ⇒ F , Z YNY ' PF , Z u = F , Z u

⇔ F , Z YNY ' PF , Z F , Z u = F , Z u

So  any  eigenvalue  of  YNY ' PF , Z is  also  one  of  F ,Z YNY ' P F , Z =
F ,Z YNY 'F , Z ' P .  Since, according to (1),  both operators have the same trace, we may 

state that they have identical eigenvalues.

So, in particular: 1YNY ' PF , Z  = 1F , Z YNY ' PF , Z  = 1 Y F ,Z N Y F , Z ' P 

Besides:
1 Y F , Z N Y F ,Z ' P  = Max

v' Pv=1
v ' P Y F ,Z N Y F , Z ' Pv = In v  Y F , Z , N , P  (4)

Note that v is then the standardized first principal component of  Y F , Z , N , P  's PCA, and so:

v∈〈F ,Z 〉 (5)

From (4) and (5), we deduce:

1 Y F , Z N Y F ,Z ' P  = In〈v 〉 Y F ,Z , N ,P  = In〈 v〉Y , N ,P 

provided that it has maximal value for v∈〈F ,Z 〉 .

So, we may write:

Max
F∈〈X 〉

C6 ⇔ Max
F∈〈 X 〉

Max
v∈〈 F , Z 〉

In〈v 〉Y , N , P 
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⇔ Max
v∈〈 X , Z 〉

In〈 v〉Y , N , P (6)

(6)  is  none other  than the  program of  (Y,N,P)'s  MRA onto subspace <X,Z>.  So,  to  get  the  F 
maximizing C6, one has to perform this MRA, get rank 1 solution v, and then decompose  v onto 
<X> and <Z> . The standardized X-component of this decomposition is the sought F.

Let us apply this to the case pictured on fig. 6: MRA of (Y,I,P) onto subspace <X,Z> is PCA of 
(Π<X,Z>Y,I,P).  But  in  this  case:   Π<X,Z>Y = Y.  And  (Y,I,P)'s  PCA  leads  to  first  component 
y2 = y3 = z + εx2 , whereby we get F = x2. 
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Appendix 2:

Thematic partitioning of predictors

Figure 1: Thematic hierarchy of predictor partitions for the city data
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Figure 2:   Some thematic models of the city data  
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