Global Sensitivity Analysis of Stochastic Computer Models with Generalized Additive Models - Archive ouverte HAL
Autre Publication Scientifique Année : 2007

Global Sensitivity Analysis of Stochastic Computer Models with Generalized Additive Models

Résumé

The global sensitivity analysis, used to quantify the influence of uncertain input parameters on the response variability of a numerical model, is applicable to deterministic computer codes (for which the same set of input parameters gives always the same output value). This paper proposes a global sensitivity analysis method for stochastic computer codes (having a variability induced by some uncontrollable parameters). The mean and dispersion of the code outputs are modeled by two interlinked Generalized Additive Models (GAM). The "mean" model allows to obtain the controllable parameters sensitivity indices, while the "dispersion" model allows to obtain the uncontrollable parameters ones. The relevance of the proposed model is analyzed with two case studies. Results show that the joint modeling approach leads to more accurate sensitivity index estimations, especially for the joint GAM model.
Fichier principal
Vignette du fichier
sobol_jointGAMHAL.pdf (683.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00232805 , version 1 (03-02-2008)
hal-00232805 , version 2 (13-01-2009)
hal-00232805 , version 3 (08-06-2009)

Identifiants

Citer

Bertrand Iooss, Mathieu Ribatet, Amandine Marrel. Global Sensitivity Analysis of Stochastic Computer Models with Generalized Additive Models. 2007. ⟨hal-00232805v1⟩
185 Consultations
605 Téléchargements

Altmetric

Partager

More