
HAL Id: hal-00232805
https://hal.science/hal-00232805v1

Submitted on 3 Feb 2008 (v1), last revised 8 Jun 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Sensitivity Analysis of Stochastic Computer
Models with Generalized Additive Models

Bertrand Iooss, Mathieu Ribatet, Amandine Marrel

To cite this version:
Bertrand Iooss, Mathieu Ribatet, Amandine Marrel. Global Sensitivity Analysis of Stochastic Com-
puter Models with Generalized Additive Models. 2007. �hal-00232805v1�

https://hal.science/hal-00232805v1
https://hal.archives-ouvertes.fr


ha
l-

00
23

28
05

, v
er

si
on

 1
 -

 3
 F

eb
 2

00
8

Global sensitivity analysis of stochastic computer

models with generalized additive models

Bertrand IOOSS∗, Mathieu RIBATET† and Amandine MARREL‡

∗ CEA Cadarache, DEN/DER/SESI/LCFR, 13108 Saint Paul lez Durance, Cedex, France
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Abstract

The global sensitivity analysis, used to quantify the influence of uncertain input pa-

rameters on the response variability of a numerical model, is applicable to deterministic

computer codes (for which the same set of input parameters gives always the same output

value). This paper proposes a global sensitivity analysis method for stochastic computer

codes (having a variability induced by some uncontrolable parameters). The mean and

dispersion of the code outputs are modeled by two interlinked Generalized Additive Mod-

els (GAM). The “mean” model allows to obtain the controlable parameters sensitivity

indices, while the “dispersion” model allows to obtain the uncontrolable parameters ones.

The relevance of the proposed model is analyzed with two case studies. Results show

that the joint modeling approach leads to more accurate sensitivity index estimations,

especially for the joint GAM model.

Keywords: joint modeling, mean and dispersion, generalized linear model, metamodel,

uncertainty

1 INTRODUCTION

Many phenomena are modeled by mathematical equations which are implemented and solved

by complex computer codes. These computer models often take as inputs a high number of

numerical parameters and physical variables, and give several outputs (scalars or functions).

1



For the development of such computer models, its analysis, or its use the global Sensitivity

Analysis (SA) method is an invaluable tool (Saltelli et al. [26], Kleijnen [12], Helton et al. [6]).

It takes into account all the variation ranges of the inputs, and tries to apportion the output

uncertainty to the uncertainty in the input factors. These techniques, often based on the

probabilistic framework and Monte-Carlo methods, require a lot of simulations. The uncertain

input parameters are modeled by random variables and characterized by their probabilistic

density functions. The SA methods are used for model calibration, model validation, decision

making process, i.e. all the processes where it is useful to know which variables mostly

contribute to output variability.

The current SA methods are applicable to the deterministic computer codes, codes for

which the same set of input parameters always gives the same output values. The randomness

is limited to the model inputs, whereas the model itself is deterministic. Most computer

codes belong to this kind of model. For example in the nuclear engineering domain, global

sensitivity analysis tools have been applied to waste storage safety studies (Helton et al. [6]),

environmental models of dose calculations (Iooss et al. [10]), pollutant transport models in

the groundwater (Volkova et al. [31]). In such industrial studies, numerical models are often

too time consuming for applying directly the global SA methods. To avoid this problem,

one solution consists in replacing the time consuming computer code by an approximate

mathematical model, called response surface or surrogate model or also metamodel (Sacks et

al. [24], Fang et al. [3]). This function must be as representative as possible of the computer

code, with good prediction capabilities and must require a negligible calculation time. Several

metamodels are classically used: polynomials, splines, neural networks, Gaussian processes

(Chen et al. [2], Fang et al. [3]).

In this paper, we are not interested by deterministic computer models but by stochas-

tic numerical models - i.e. the same input parameters set leads to different output values.

The model is therefore intrinsically stochastic. For the uncertainty analysis, Kleijnen [12]

has raised this question, giving an example concerning a queueing model. In the nuclear

engineering domain, examples are given by Monte-Carlo neutronic models used to calculate

elementary particles trajectories, Lagrangian stochastic models for simulating a large number
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of particles inside turbulent media (in atmospheric or hydraulic environment). In our study,

“uncontrolable” parameters correspond to parameters that are known to exist, but unobserv-

able, inaccessible or non describable for some reasons. It includes the important case in which

observable vectorial parameters are too complex to be described by a reasonable number of

scalar parameters. This last situation concerns the codes in which some simulations of ran-

dom processes are used: the output values of the computer code depend on the realizations

of these random functions. For example, one can quote some partial differential equation

resolutions in heterogeneous random media simulated by geostatistical techniques (fluid flows

in oil reservoirs, Zabalza-Mezghani et al. [36], acoustical wave propagation in turbulent fluids,

Iooss et al. [8]), where the uncontrolable parameter is the simulated spatial field involving

several thousand scalar values for each realization.

For an environmental assessment problem, Tarantola et al. [29] propose a first solution

by introducing a binomial input parameter ξ governing the simulation of the random field.

Therefore, the sensitivity index of ξ quantifies the influence of the random field on the model

output variable. However, this method does not give any idea about the influence of the

possible interactions between the uncontrolable parameter and the other uncertain input pa-

rameters. Moreover, to perform a sensitivity analysis, such approach requires a large number

of computer model calculations (several hundreds per input parameter). For most applica-

tions, it is impossible due to intractable CPU times, computer codes have to be substituted

for metamodels.

For stochastic computer models, classical metamodels (devoted to approximate deter-

ministic computer models) are not pertinent. To overcome this problem, the commonly used

Gaussian Process (GP) model is interesting. Kleijnen & van Beers [13] have demonstrated the

usefulness of GP for stochastic computer model. Moreover, GP can include an additive error

component (called the “nugget effect”) by adding a constant term into its covariance function

(Rasmussen & Williams [22]). However, it supposes that the error term is independent of

the input parameters (homoscedasticity hypothesis), which means that the uncontrolable pa-

rameter does not interact with controlable parameters. This hypothesis limits the usefulness

of the GP model to particular cases. To construct heteroscedastic metamodels for stochastic
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computer codes, Zabalza-Mezghani et al. [35] model the mean and the dispersion of computer

code outputs by two interlinked Generalized Linear Models (GLMs). This approach, called

the joint model, has been previously studied in the context of experimental data modeling

(McCullagh & Nelder [16]). Compared to the GP model, this approach theoretically suits the

study of heteroscedastic situations and allows the obtention of a model for the dispersion.

Following the work of Zabalza et al., Iooss & Ribatet [9] have recently introduced the joint

model to perform a global sensitivity analysis of a stochastic model. Results show that a total

sensitivity index of all the uncontrolable parameters can be computed using the dispersion

component of the joint model. However, the parametric form of the GLM framework provides

some limitations when modeling complex computer code outputs. To resolve this problem, this

paper suggests the use of non parametric models to allow more flexibility and complexity while

fitting to the data. Due to its similarity with GLMs, Generalized Additive Models (GAM)

are considered (Hastie & Tibshirani [4], Wood & Augustin [34]). GAMs allow variable and

model selections via a quasi-likelihood function, classical statistical tests on coefficients, and

graphical displays.

This paper starts by describing the joint model construction, firstly with the GLM, sec-

ondly with the GAM. The third section describes the global sensitivity analysis for determin-

istic models, and its extension to stochastic models using joint models. Particular attention is

devoted to the calculation of variance-based sensitivity indices (the so-called Sobol indices).

Considering a simple analytic function, the performance of the proposed approach is compared

to other commonly used models. Next, an application on an actual industrial case (ground-

water radionucleide migration modeling) is given. Finally, some conclusions synthesize the

contributions of this work.

2 JOINT MODELING OF MEAN AND DISPERSION

2.1 Using the Generalized Linear Models

The class of GLM allows to extend the class of the traditional linear models by the use of:

(a) a distribution which belongs to the exponential family; (b) and a link function which
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connects the explanatory variables to the explained variable (Nelder & Wedderburn [19]).

Let us describe the first component of the model concerning the mean:















E(Yi) = µi, ηi = g(µi) =
∑

j xijβj ,

Var(Yi) = φiv(µi) ,

(1)

where (Yi)i=1...n are independent random variables with mean µi; xij are the observations of

the parameter Xj ; βj are the regression parameters which have to be estimated; ηi is the mean

linear predictor; g(·) is a differentiable monotonous function (called the link function); φi is

the dispersion parameter and v(·) is the variance function. To estimate the mean component,

the functions g(·) and v(·) have to be specified. Some examples of link functions are given by

the identity (traditional linear model), root square, logarithm, and inverse functions. Some

examples of variance functions are given by the constant (traditional linear model), identity

and square functions.

Within the joint model framework, the dispersion parameter φi is not supposed to be

constant as in a traditional GLM, but is supposed to vary according to the model:















E(di) = φi, ζi = h(φi) =
∑

j uijγj ,

Var(di) = τvd(φi) ,

(2)

where di is a statistic representative of the dispersion, γj are the regression parameters which

have to be estimated, h(·) is the dispersion link function, ζi is the dispersion linear predictor,

τ is a constant and vd(·) is the dispersion variance function. uij are the observations of

the explanatory variable Uj . The variables (Uj) are generally taken among the explanatory

variables of the mean (Xj), but can also be different. To ensure positivity, h(φ) = log φ is

often chosen for the dispersion link function. For the statistic representing the dispersion d,

the deviance contribution (which is close to the distribution of a χ2) is considered. Therefore,

as the χ2 is a particular case of the Gamma distribution, vd(φ) = φ2 and τ ∼ 2. In particular,

for the Gaussian case, these relations are exact: d is χ2 distributed and τ = 2.

The joint model is fitted using Extended Quasi-Loglikelihood (EQL) (Nelder & Pregibon
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[18]) maximization. The EQL behaves as a log-likelihood for both mean and dispersion

parameters. This justifies an iterative procedure to fit the joint model. First, a GLM is fitted

on the mean; then from the estimate of d, another GLM is fitted on the dispersion. From

the estimate of φ, weights for the next estimate of the GLM on the mean are obtained. This

process can be reiterated as many times it is necessary, and allows to entirely fit our joint

model (McCullagh & Nelder [16]).

Statistical tools available in the GLM fitting are also available for each component of

the joint model: deviance analysis, Student and Fisher tests, residuals graphical analysis. It

allows to make some variable selection in order to simplify model expressions.

Remark: Let us note that it is possible to build polynomial models for the mean and the

variance separately (Vining & Myers [30], Bursztyn & Steinberg [1]). This approach, called the

dual modeling, consists in repeating calculations with the same sets of controlable parameters

(which is not necessary in the joint modeling approach). The dual modeling approach has been

successfully applied in many situations, especially for robust conception problems: optimizing

a mean response function while minimizing the variance. However for our purpose (accurate

fitting of the mean and dispersion components), it has been shown that this dual model is less

performant than the joint model (Zabalza et al. [35], Lee & Nelder [14]): the dual modeling

approach fits the dispersion model given the mean model and this approach does not always

lead to optimal fits.

2.2 Extension to the Generalized Additive Models

Generalized Additive models (GAM) were introduced by Hastie & Tibshirani [4, 5] and allow

a linear term in the linear predictor η =
∑

j βjXj of equation (1) to be replaced by a sum of

smooth functions η =
∑

j sj(Xj). The sj(.)’s are unspecified functions that are obtained by

fitting a smoother to the data, in an iterative procedure. GAMs provide a flexible method for

identifying nonlinear covariate effects in exponential family models and other likelihood-based

regression models. The fitting of GAM introduces an extra level of iteration in which each

spline is fitted in turn assuming the others known. GAM terms can be mixed quite generally

with GLM terms in deriving a model.
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One common choice for sj is the smoothing spline (Wahba [32]) - i.e. splines with knots

at each distinct value of the variables. In regression problems, smoothing splines have to

be penalized in order to avoid data overfitting. Wood & Augustin [34] have described in

details how GAMs can be constructed using penalized regression splines. This approach is

particularly well-suited because it allows the integrated model selection via Generalized Cross

Validation (GCV) and related criteria, the incorporation of multi-dimensional smooths and

relatively well founded inference using the resulting models. Because numerical models often

exhibit strong interactions between input parameters, the incorporation of multi-dimensional

smooth (for example the bi-dimensional spline term sij(Xi,Xj)) is particularly important in

our context.

GAMs are generally fitted using penalized likelihood maximization. For this purpose, the

likelihood is modified by the addition of a penalty for each smooth function, penalizing its

“wiggliness”. Namely, the penalized loglikelihood is defined as:

PL = L +

p
∑

j=1

λj

∫

(

∂2sj

∂x2
j

)2

dxj (3)

where L is the loglikelihood function, p is the total number of smooth terms and λj are

“tuning” constants which compromise between goodness of fit and smoothness.

Estimation of these “tuning” constants is generally achieved using the GCV score mini-

mization. The GCV score is defined as:

SGCV =
nd

(n − DoF )2
(4)

where n is the number of data, d is the deviance and DoF is the effective degrees of freedom,

i.e. the trace of the so-called “hat” matrix. Extension to (E)QL models is straightforward by

substituting the likelihood function L and the deviance d for their (extended) quasi counter-

parts.

We have seen that GAMs extend in a natural way GLMs. Therefore, it would be interesting

to extend the joint GLM model to a joint GAM one. Such ideas have been proposed in Rigby
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& Stasinopoulos [23] where both the mean and variance were modeled using semi-parametric

additive models (Hastie & Tibshirani [5]). This model is restricted to observations following a

Gaussian distribution and is called Mean and Dispersion Additive Model (MADAM). As our

model is based on GAMs and by analogy with the denomination “joint GLM”, we call it “joint

GAM” in the following. Rigby & Stasinopoulos [23] proposed an algorithm to fit the MADAM

model. This fitting procedure is exactly the same than the one for the two interlinked GLMs,

apart from the stopping rule. Indeed, the two interlinked GLMs (resp. GAMs) model is fitted

when the EQL (resp. PEQL) remains stable within the iterative procedure.

3 GLOBAL SENSITIVITY ANALYSIS

3.1 Deterministic models

The global SA methods are applicable to deterministic computer codes, codes for which the

same set of input parameters always leads to the same response value. This is considered by

the following model:

f : R
p → R

X 7→ Y = f(X)
(5)

where Y is the output, X = (X1, . . . ,Xp) are p independent inputs, and f is the model

function, which is analytically not known. In this section, let us recall some basic ideas on

Sobol sensitivity indices applied on this model.

Among quantitative methods, variance-based methods are the most often used (Saltelli et

al. [26]). The main idea of these methods is to evaluate how the variance of an input or a

group of inputs contributes into the variance of output. We start from the following variance

decomposition:

Var [Y ] = Var [E (Y |Xi)] + E [Var (Y |Xi)] , (6)

which is known as the total variance theorem. The first term of this equality, named variance

of the conditional expectation, is a natural indicator of the importance of Xi into the variance
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of Y : the greater the importance of Xi, the greater is Var[E(Y |Xi)]. Most often, this term is

divided by Var[Y ] to obtain a sensitivity index in [0, 1].

To express the sensitivity indices, we use the unique decomposition of any integrable

function on [0, 1]p into a sum of elementary functions (see for example Sobol [28]):

f(X1, · · · ,Xp) = f0 +

p
∑

i

fi(Xi) +

p
∑

i<j

fij(Xi,Xj) + . . . + f12..p(X1, · · · ,Xp) , (7)

where f0 is a constant and the other functions verify the following conditions:

∫ 1

0
fi1,...,is(xi1 , . . . , xis) dxik = 0 ∀k = 1, . . . , s , ∀{i1, . . . , is} ⊆ {1, . . . , p} . (8)

Therefore, if the Xis are mutually independent, the following decomposition of the model

output variance is possible (Sobol [28]):

Var [Y ] =

p
∑

i

Vi(Y ) +

p
∑

i<j

Vij(Y ) +

p
∑

i<j<k

Vijk(Y ) + . . . + V12..p(Y ) , (9)

where Vi(Y ) = Var[E(Y |Xi)], Vij(Y ) = Var[E(Y |XiXj)] − Vi(Y ) − Vj(Y ), . . . One can thus

defines the sensitivity indices by:

Si =
Var [E (Y |Xi)]

Var(Y )
=

Vi(Y )

Var(Y )
, Sij =

Vij(Y )

Var(Y )
, Sijk =

Vijk(Y )

Var(Y )
, . . . (10)

These coefficients are called the Sobol indices, and can be used for any complex model func-

tions f . The second order index Sij expresses sensitivity of the model to the interaction

between the variables Xi and Xj (without the first order effects of Xi and Xj), and so on for

higher orders effects. The interpretation of these indices is natural as their sum is equal to

one (thanks to equation (9)): the larger and close to one an index value, the greater is the

importance of the variable or the group of variables linked to this index.

For a model with p inputs, the number of Sobol indices is 2p − 1; leading to an intractable

number of indices as p increases. Thus, to express the overall sensitivity of the output to an
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input Xi, Homma & Saltelli [7] introduce the total sensitivity index:

STi
= Si +

∑

j 6=i

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + . . . =
∑

l∈#i

Sl , (11)

where #i represents all the“non-ordered”subsets of indices containing index i. Thus,
∑

l∈#i Sl

is the sum of all the sensitivity indices containing i in their index. For example, for a model

with three input parameters, ST1
= S1 + S12 + S13 + S123.

The estimation of these indices can be done by Monte-Carlo simulations (Sobol [28],

Saltelli [25]) or by FAST method (Saltelli et al. [27]). Recent algorithms have also been

introduced to reduce the number of required model evaluations significantly. As explained in

the introduction, an alternative method consists in replacing complex computer models by

metamodels which have negligible calculation time. Estimation of Sobol indices by Monte-

Carlo techniques with their confidence intervals (requiring thousand of simulations) can then

be done using these response surfaces. In practice, when the model has a great number of

input parameters, only the first order and total Sobol indices are estimated.

3.2 Stochastic models

In this work, models containing some intrinsic alea, which is described as an uncontrolable

random input parameter ε, are called “stochastic computer models”. Similarly from equation

(5), consider the following (stochastic) model:

g : R
p → R

X 7→ Y = f(X) + ν(ε,X : ε)
(12)

where X are the p controlable input parameters (independent random variables), Y is the

output, f is the deterministic part of the model function and ν is the stochastic part of the

model function. ν is considered to be centered: E(ν) = 0. The notation ν(ε,X : ε) means that

ν depends only on ε and on the interactions between ε and X. The additive form of equation

(12) is deduced directly from the decomposition of the function g into a sum of elementary

functions depending on (X, ε) (like the decomposition in Eq. (7)).
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The joint model introduced in section 2 enables us to recover two GLMs or two GAMs:

Ym = E(Y |X) = µ (13)

by the mean component (Eq. (1)), and

Yd = Var(Y |X) = φv(µ) (14)

by the dispersion component (Eq. (2)). If there is no uncontrolable parameter ε, it leads to a

deterministic model case with Yd = Var(Y |X) = 0. By using the total variance theorem (Eq.

(6)), the variance of the output variable Y can be decomposed by:

Var [Y (X, ε)] = Var [E (Y |X)] + E [Var (Y |X)] = Var (Ym) + E (Yd) . (15)

According to model (12), Ym is the deterministic model part, and Yd is the variance of the

stochastic model part:

Ym = f(X) ,

Yd = Var [ν(ε,X : ε)|X]
(16)

The variances of Y and Ym are now decomposed according to the contributions of their

input parameters X. For Y , the same decomposition than for deterministic models holds (Eq.

(9)). However, it includes the additional term E (Yd) (the mean of the dispersion component)

deduced from equation (15). Consequently,

Var(Y ) =

p
∑

i

Vi(Y ) +

p
∑

i<j

Vij(Y ) +

p
∑

i<j<k

Vijk(Y ) + . . . + V12..p(Y ) + E (Yd) . (17)

For the mean component Ym, we have

Var(Ym) =

p
∑

i

Vi(Ym) +

p
∑

i<j

Vij(Ym) +

p
∑

i<j<k

Vijk(Ym) + . . . + V12..p(Ym) . (18)
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By noticing that

Vi(Ym) = Var[E(Ym|Xi)] = Var{E[E(Y |X)|Xi]} = Var[E(Y |Xi)] = Vi(Y ) , (19)

and from equation (10), the sensitivity indices for the variable Y (X, ε) according to the

controlable parameters X = (Xi)i=1...p can be computed using:

Si =
Vi(Ym)

Var(Y )
, Sij =

Vij(Ym)

Var(Y )
, . . . (20)

These Sobol indices can be computed by classical Monte-Carlo techniques, the same ones used

in the deterministic model case. These algorithms are applied on the metamodel defined by

the mean component Ym of the joint GLM or the joint GAM.

Thus, all terms contained in Var(Ym) of the equation (15) have been considered. It

remains to estimate E(Yd) by a simple numerical integration of Yd following the law of X. Yd

is evaluated with a metamodel, for example the dispersion component of the joint GLM or

joint GAM. E(Yd) includes all the decomposition terms of Var(Y ) (according to X and ε) not

taken into account in Var(Ym) i.e. all terms involving ε. Therefore, the total sensitivity index

of ε is

STε
=

E(Yd)

Var(Y )
. (21)

As Yd is a positive random variable, positivity of STε
is guaranteed. In practice, Var(Y ) can

be estimated from the data or from simulations of the fitted joint model:

Var(Y ) = Var(Ym) + E(Yd) . (22)

If Var(Y ) is computed from the data, it seems preferable to estimate E(Yd) with Var(Y ) −

Var(Ym) to satisfy equation (15). In our applications, the total variance will be estimated

using the fitted joint model (Eq. (22)).

Finally, let us note that it is not possible to quantitatively distinguish the various contri-

butions in STε
(Sε, Siε, Sijε, . . . ). However, the analysis of the terms in the regression model

Yd and their t-value study give qualitative contributions. For example, if an input parameter
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Xi is not present in Yd, we can deduce the following correct information: Siε = 0. Moreover, if

the t-values analysis and the deviance analysis show that an input parameter Xi has a smaller

influence than another input parameter Xj , we can suppose that the interaction between Xi

and ε is less influential than the interaction between Xj and ε. Therefore, giving this kind

of information is an improvement compared to the Tarantola’s method (Tarantola et al. [29],

see introduction).

In conclusion, this new approach, based on joint models to compute Sobol sensitivity

indices, is useful if the following conditions hold:

• if the computer model contains some uncontrolable parameters (the model is no more

deterministic but stochastic);

• if a metamodel is needed due to large CPU times of the computer model;

• if some of the uncontrolable parameters interact with some controlable input ones;

• if some information about the influence of the interactions between the uncontrolable

parameters and the other input parameters is of interest.

4 APPLICATIONS

4.1 An analytic test case: the Ishigami function

The proposed method is first illustrated on an artificial analytical model with 3 input variables,

called the Ishigami function (Homma & Saltelli [7], Saltelli et al. [26]):

Y = f(X1,X2,X3) = sin(X1) + 7 sin(X2)
2 + 0.1X4

3 sin(X1) , (23)

where Xi ∼ U [−π;π] for i = 1, 2, 3. For this function, all the Sobol sensitivity indices

(S1, S2, S3, S12, S13, S23, S123, ST1
, ST2

, ST3
) are known. This function is used in most

intercomparison studies of global sensitivity analysis algorithms. In our study, the classical

problem is altered by considering X1 and X2 as the controlable input random variables, and

X3 as an uncontrolable input random variable. It means that the X3 random values are not
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used in the modeling procedure; this parameter is considered to be inaccessible. However,

sensitivity indices have the same theoretical values as in the standard case.

For the model fitting, 1000 samples of (X1,X2,X3) were simulated leading to 1000 ob-

servations for Y . The GLM and GAM (with their relative joint extensions) are compared to

the Gaussian Process (GP) model including or not the additive error component (the nugget

effect). The fitting methodology is the one proposed by Marrel et al. [15] (based on the

Welch et al. [33] sequential algorithm) which contains a linear regression component and a

GP defined by a generalized exponential covariance. To compare the predictivity of different

metamodels, we use the predictivity coefficient Q2, which is the determination coefficient R2

computed from a test sample (composed here by 10000 randomly chosen points). For the

joint model, Q2 is computed on the mean component.

4.1.1 Metamodeling

Simple GLM

First, a fourth order polynomial for the GLM is considered. Only the explanatory terms are

selected in our regression model using analysis of deviance and the Fisher statistics. The

Student test on the regression coefficients and residuals graphical analysis make it possible to

judge the model quality. For a simple GLM fitting, one obtains

Y = 1.92 + 2.69X1 + 2.17X2
2 − 0.29X3

1 − 0.29X4
2 . (24)

The explained deviance of this model is Dexpl = 61.3%. The predictivity coefficient is of the

same order: Q2 = 60.8%. We see that it remains 39% of non explained deviance due to the

model inadequacy and/or to the uncontrolable parameter.

Joint GLM

One tries to model the data by a joint GLM. The mean component gives the same model

(24) as the simple GLM. For the dispersion component, using analysis of deviance techniques,

no significant explanatory variable was found. Thus, the dispersion component is supposed

to be constant; and the joint GLM is equivalent to the simple GLM approach - but with a
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different fitting process. In addition, as one obtains the same explained deviance value as the

simple GLM one, it corroborates the joint GLM approach relevance - even for a homoscedastic

parameterization.

Simple GAM

We will be now studying the non parametric modeling. A simple GAM gives the following

result:

Y = 3.76 − 2.67X1 + s(X1) + s(X2) , (25)

where s(·) is a spline term and where we have kept some parametric terms by applying a

term selection procedure. The explained deviance of this model is Dexpl = 76.8%: the simple

GAM approach clearly outperforms the simple GLM one. Even if this is obviously related

to an increasing number of parameters, it is also explained by the fact that GAMs are more

adjustable than GLMs: the number of parameters remains very small compared to the data

size (1000). This is confirmed by the value of the predictivity coefficient Q2 = 75.1% which

is very close to the explained deviance (76.8%).

GP model

Let’s now compare this GAM with the popular GP metamodel. Without introducing any

nugget effect, the obtained GP gives Q2 = 72.8%. By introducing of the nugget effect (addi-

tional error with constant variance), the obtained GP gives Q2 = 74.3%. Consequently, the

GP model including a nugget effect is similar to the simple GAM one. The variance of the

nugget effect is estimated to 10% of the total variance, when one expects to obtain the residual

variance: 1 − Q2 = 25.7%. We will be discussing in the following section the consequence of

this wrong estimation.

Joint GAM

One models now the data by a joint GAM. The resulting model is described by the following

features:

Ym = 3.75 − 3.06X1 + s(X1) + s(X2) ,

Yd = 0.59 + s(X1) .
(26)

The explained deviances are Dexpl = 92.8% for the mean component and Dexpl = 36.7% for

the dispersion component. The predictivity coefficient of the mean component is Q2 = 75.5%,
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which is slightly better than the simple GAM and GP results.

Discussion

The explained deviance given by the joint GAM mean component is clearly larger than the

one given by the simple GAM approach. This last point demonstrates the efficiency of the

joint modeling of the mean and dispersion approach when heteroscedasticity is involved. In-

deed, the joint procedure leads to suited prior weights for the mean component. The joint

GAM improves both the joint GLM, simple GAM and GP approaches:

(a) due to the GAMs flexibility, the explanatory variable X1 is identified to model the disper-

sion component (the interaction between X1 and the uncontrolable parameter X3 is therefore

retrieved);

(b) the joint GAM explained deviance (93%) for the mean component is clearly larger than

the simple GAM and joint GLM ones (Joint GLM: 61%, simple GAM: 77%).

Figure 1 shows the observed response versus the predicted values for the three models

Joint GLM, Simple GAM and Joint GAM. In the following graphical analyses, we restrict

our attention to these three models, and not to the GP model. Indeed, comparisons are

not possible with the GP model because it interpolates the observed responses and the ob-

served residuals are worth zero. Even if the nugget effect introduction allows to obtain non

zero residuals, it is not appropriate to perform a statistical analysis of these residuals and a

comparison with another model residuals.

On one hand, the advantage of the GAM approaches is visible in the Figure 1 as the

dispersion around the y = x line is clearly reduced. On the other hand, Figure 2 shows

that the deviance residuals for the mean component of the joint GAM seem to be more

homogeneously dispersed around the x-axis; leading to a better prediction on the whole range

of the observations. Thus, the joint GAM approach is the most competitive model.

Figure 3 shows the proportion ∆ of observations that lie within the α% theoretical con-

fidence interval in function of the confidence level α. By definition, if a model is suited for

both mean and dispersion modelings, the points should be located around the y = x line. As

a consequence, this plot is useful to quantify the goodness of fitting accuracy of the models.

Figure 3 shows that joint GLM approach is the most accurate model. The joint GAM is less
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Figure 1: Observed response variable versus the predicted values for the three models: Joint
GLM, Simple GAM, Joint GAM (Ishigami application).
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Figure 2: Deviance residuals for the Simple and Joint GAMs versus the fitted values (Ishigami
application). Dashed lines correspond to local polynomial smoothers.

relevant but has a homogeneous dispersion around the y = x line. The simple GAM approach

systematically lead to overestimations. In particular, it means that the variance, supposed to

be a constant, is overestimated and that the dispersion is poorly predicted.

Lastly, from Figures 1–3, the joint GAM seems to be the most competitive one. Indeed,

the GAM flexibility allows to model accurately the mean component while the dispersion

seems to be correctly modeled.

4.1.2 Sobol indices

Table 1 depicts the Sobol sensitivity indices for the joint GLM and the joint GAM using

equations (20) and (21). The standard deviation estimates (sd) are obtained from 100 repe-
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Figure 3: Proportion ∆ (in percent) of observations that lie within the α% theoretical confi-
dence interval in function of the confidence level α (Ishigami application).

titions of the Monte-Carlo estimation procedure (which uses 104 model computations for one

index estimation). When this Monte-Carlo procedure is used to estimate the Sobol index, we

report “MC” in the “Method” column; while “Eq” indicates that the sensitivity indices have

been deduced from the joint model regressive equations. Therefore, no estimation errors (sd)

are associated to these indices (except for total indices STi
which can be deduced from Si).

When no quantitative deduction on the sensitivity index can be made with this process, the

three column values are marked with the symbol “—”.

The joint GLM gives only a good estimation of S1, while S2 and ST3
are badly estimated

(errors greater than 30%). S12 is correctly put to zero by looking directly at the joint GLM

mean component formula (the same as the equation (24)). However, some conclusions drawn

from the GLM dispersion component formula (which is a constant) are wrong. As no ex-

planatory variable is involved in this formula, the deduced interaction indices are equal to

zero: S13 = S23 = S123 = 0. Thus, S3 = ST3
= 0.366 while the correct values of S3 and ST3

are respectively zero and 0.243.

Contrary to the joint GLM, the joint GAM gives good approximations of all the Sobol

indices (errors smaller than 7%), including ST3
. Moreover, the deductions drawn from the

model formulas (25) are correct (ST2
= S2, S12 = S23 = S123 = 0). The only drawback of this

method is that some indices remain unknown due to the non separability of the dispersion

component effects. However, it can be deduced that S13 is non null due to the explicative
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effect of X1 in the dispersion component.

Table 1 gives the Sobol indices computed by the same Monte-Carlo procedure using two

classical metamodels as the simple GAM and the GP models. To estimate the first order

Sobol indices Si = Vi(Ym)/Var(Y ) (for i = 1, 2), the metamodel is used to compute Vi(Ym)

and the fitted data (the 1000 observations of Y ) to compute Var(Y ). To estimate the total

sensitivity index ST3
of the uncontrolable parameter, the metamodel predictivity coefficient

Q2 = 0.751 is used.

In fact, by supposing that the metamodels fit correctly the computer code, one deduces

that all the unexplained part of these metamodels is due to the uncontrolable parameter:

ST3
= 1 − Q2. This is a strong hypothesis, which is verified here due to the simplicity of

the analytical function. However, it will not be satisfied for all application cases. Moreover

in practical and complex situations, the Q2 estimation (usually done by a cross-validation

method) can be difficult and subject to caution. For the Ishigami function, S1, S2, ST3
are

correctly estimated. S12 can be deduced from the formula (25) for the simple GAM and

estimated by Monte-Carlo method for the GP model. However, any other sensitivity indices

can be proposed as no dispersion modeling is involved.

Table 1: Sobol sensitivity indices (with standard deviations) for the Ishigami function: exact
and estimated values from joint GLM, joint GAM, simple GAM and GP model. “Method”
indicates the estimation method: MC for the Monte-Carlo procedure, Eq for a deduction
from the model equations and Q2 for the deduction of the predictivity coefficient Q2. “—”
indicates that the value is not available.

Indices
Exact Joint GLM Joint GAM Simple GAM GP
Values Values sd Method Values sd Method Values sd Method Values sd Method

S1 0.314 0.314 4e-3 MC 0.325 5e-3 MC 0.333 6e-3 MC 0.328 7e-3 MC
S2 0.442 0.318 5e-3 MC 0.414 5e-3 MC 0.441 6e-3 MC 0.442 7e-3 MC
ST3

0.244 0.366 2e-3 MC 0.261 2e-3 MC 0.249 — Q2 0.257 — Q2

S12 0 0 — Eq 0 — Eq 0 — Eq 0.004 8e-3 MC
S13 0.244 0 — Eq > 0 — Eq — — — — — —
S23 0 0 — Eq 0 — Eq — — — — — —
S123 0 0 — Eq 0 — Eq — — — — — —
ST1

0.557 0.314 4e-3 Eq — — — — — — — — —
ST2

0.443 0.318 5e-3 Eq 0.414 5e-3 Eq — — — — — —
S3 0 0.366 2e-3 Eq — — — — — — — — —

Remark: By using the GP model including a nugget effect, one can think that estimating

the nugget effect would give an estimation of the total sensitivity index. In this example, the

variance of the nugget effect has been estimated to 10% of the total variance, which is far
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from the exact value (24%). Other tests (not presented here) have shown that the estimation

of this nugget effect is not robust. The same problems arise during the estimation of the

hyperparameters of the GP covariance function (Fang et al. [3], Marrel et al. [15]). This is

caused by a difficult optimization step while fitting the GP model.

In conclusion, this example shows that the joint models, and specially the joint GAM,

can adjust complex heteroscedastic situations for which classical metamodels are inadequate.

Moreover, the joint models offer a theoretical basis to compute global sensitivity indices of

stochastic models.

4.2 Application to an hydrogeologic transport code

This methodology is now applied to a complex industrial model of radioactive pollutants trans-

port in saturated porous media using the MARTHE computer code (developed by BRGM,

France). In the context of an environmental impact study, MARTHE has been applied to a

model of strontium 90 (90Sr) transport in saturated media for a radwaste temporary storage

in Russia (Volkova et al. [31]). Only a partial characterization of the site has been made and,

consequently, values of the model input parameters are not known precisely: 20 scalar input

parameters have been considered as random variables, each of them associated to a specified

probability density function. The model output variables of interest concern the 90Sr concen-

tration values in different spatial locations. One of the main goals of this study is to identify

the most influent parameters of the computer code in order to improve the characterization

of the site in a judicious way. Because of large computing times of the MARTHE code, the

Sobol sensitivity indices are computed using metamodels (boosting regression trees model for

Volkova et al. [31] and Gaussian Process model for Marrel et al. [15]).

As a perspective of their work, Volkova et al. [31] propose to study more precisely the

influence of the spatial form of an hydrogeologic layer. It consists in performing a geostatis-

tical simulation of this layer (which is a two-dimensional spatial random field), before each

calculation of the computer model. This geostatistical simulation is rather complex and the

resulting spatial field cannot be summarized by a few scalar values. Therefore, as explained

in our introduction, the hydrogeologic layer has to be considered as an uncontrolable param-
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eter of the computer model. Additionally to the uncontrolable parameter, 16 scalar input

parameters remain uncertain and are treated as random variables. It concerns the permeabil-

ity of different geological layers, the longitudinal and transversal dispersivity coefficients, the

sorption coefficients, the porosity and meteoric water infiltration intensities.

The Latin Hypercube Sampling method is used to obtained a sample of 298 random vectors

(each of dimension 16). In addition, 298 independent realizations of the spatial random field

(noticed by ε) are obtained by a specific geostatistical simulation algorithm. This leads to

obtain 298 observations (after 8 days of calculations) of the output variable of the MARTHE

model (90Sr concentration at the domain center). For the GLMs and GAMs construction

phase, the large data dispersion suggests the use of logarithmic link functions for g and h (see

Eqs (1) and (2)). Due to the large number of inputs, a manual term selection process has

been applied. No interaction term has been found to be explicative in the GLMs. However,

a bi-dimensional spline term has been added in the GAMs because of convincing deviance

contribution and negligible p-value. One synthesizes the results by giving the explained

deviance and the explanatory terms involved in the formulas:

• Simple GLM: Dexpl = 60% with the terms kd1, kd2, per1, per2.

• Joint GLM: Dexpl(mean) = 66.4%, with the same terms than the simple GLM, Dexpl(dispersion) =

8.7% with the terms kd1 and per3.

• Simple GAM: Dexpl = 81.8% with s(kd1), s(kd2), s(per3), s(per2, kd2).

• Joint GAM: Dexpl(mean) = 98.1% with the same terms than the simple GAM, Dexpl(dispersion) =

29.7% with kd1, kd2.

• GP model: the regression and covariance parts include the terms kd1, kd2, per1, per2,

per3. The nugget effect is estimated to 21.1% of the total variance, which shows that

the GP model explains 79.9% of the total variance.

kd1, kd2 and per1, per2, per3 are respectively the sorption coefficients and the permeabilities

of the different hydrogeologic layers. One observes that the GAM models outperform the GLM

ones. The predictivity coefficient (computed by the leave-one-out method) of the simple GAM

21



gives Q2 = 76.4%, while for the simple GLM Q2 = 58.8%. The GP model is slightly more

efficient than the simple GAM (Q2 = 80.4%). This small improvement may be due to a larger

flexibility of GPs and to the specific fitting procedure (Marrel et al. [15]), which is suited to

large dimensional problems (16 input parameters here).

Figure 4 shows the deviance residuals versus the fitted values for the joint GLM, simple

GAM and joint GAM models. As for the Ishigami application, GP model residuals cannot

be compared to these three models residuals. For the joint GLM approach, some outliers

are not visible to keep the figure readable. As a consequence, the GAMs clearly lead to

smaller residuals. Moreover, the joint GAM outperforms the simple GAM due to the right

explanation of the dispersion component. It can be seen that the joint GAM allows to suppress

the bias involved by the heteroscedasticity, while simple GAM residuals are affected by this

bias. Figure 5 shows the observed values versus the predicted ones. This figure confirms the

conclusions drawn from the Figure 4. Indeed, the GAM’s flexibility allows to suppress the

bias for the smallest data values.
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Figure 4: Deviance residuals (mean component) for the Simple GAM, Joint GAM and Joint
GLM versus the fitted values (MARTHE application). Dashed lines correspond to local
polynomial smoothers.

Figure 6 shows the proportion ∆ of observations that lie within the α% theoretical confi-

dence interval versus the confidence interval α. It can be seen that the joint GAM is clearly

the most accurate model. Indeed, all its points are close to the theoretical y = x line, while

the joint GLM (resp. simple GAM) systematically leads to underestimations (resp. overes-

timations). Consequently, from the Figures 4–6, one deduces that the joint GAM model is
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the most competitive one. On one hand, the mean component is modeled accurately without

any bias. On the other hand, the dispersion component is competitively modeled leading to

reliable confidence intervals.
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Figure 5: Observed response variable versus the predicted values for the three models: Joint
GLM, Simple GAM, Joint GAM (MARTHE application)
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Figure 6: Proportion ∆ (in percent) of observation that lie within the α% theoretical confi-
dence interval in function of the confidence level α. MARTHE application.

Table 2 gives the main Sobol sensitivity indices for the joint GLM, joint GAM, simple

GAM and GP models (using 104 model computations for one index estimation). The Sobol

indices of the interactions between controlable parameters are not given (except between kd2

and per2) because these interactions are not included in the formulas of the two joint models.

Therefore, their Sobol indices are zero. The two joint models give similar results for all first

order sensitivity indices. The sorption coefficient of the second layer kd2 explained more than

52% of the output variance, while the permeability of the second layer per2 explained more
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than 5%. Some large differences arise in the total influence of the uncontrolable parameter

ε: 38.2% for the joint GLM and 27.7% for the joint GAM. Moreover, the joint GLM shows

an influence of the interaction between per3 and ε, while the joint GAM shows an influence

of the interaction between kd2 and ε. In this application, we consider the joint GAM results

more reliable than the joint GLM ones because the joint GAM captures more efficiently the

mean and dispersion components of the data than the joint GLM.

Table 2: Estimated Sobol sensitivity indices (with standard deviations obtained by 100 rep-
etitions) for the MARTHE code. “Method” indicates the estimation method: MC for the
Monte-Carlo procedure, Eq for a deduction from the model equations and Q2 for the deduc-
tion of the predictivity coefficient Q2. “—” indicates that the value is not available.

Indices
Joint GLM Joint GAM Simple GAM GP

Values sd Method Values sd Method Values sd Method Values sd Method
S(kd1) 0.002 0.6e-2 MC 0.037 1.0e-2 MC 0.140 1.0e-2 MC 0.126 1.3e-2 MC
S(kd2) 0.522 0.6e-2 MC 0.524 1.0e-2 MC 0.550 1.1e-2 MC 0.603 0.9e-2 MC
S(per1) 0.018 0.7e-2 MC 0 — Eq 0 — Eq 0.012 1.1e-2 MC
S(per2) 0.052 0.6e-2 MC 0.078 1.0e-2 MC 0.044 1.0e-2 MC 0.048 1.2e-2 MC
S(per3) 0 — Eq 0.005 1.0e-2 MC 0.008 1.0e-2 MC 0.003 1.1e-2 MC
S(kd2,per2) 0 — Eq 0.063 1.0e-2 MC 0.026 1.0e-2 MC 0.021 1.4e-2 MC
ST (ε) 0.382 0.2e-2 MC 0.277 0.3e-2 MC 0.235 — Q2 0.196 — Q2

S(kd1,ε) > 0 — Eq > 0 — Eq — — — — — —
S(kd2,ε) 0 — Eq > 0 — Eq — — — — — —
S(per1,ε) 0 — Eq 0 — Eq — — — — — —
S(per2,ε) 0 — Eq 0 — Eq — — — — — —
S(per3,ε) > 0 — Eq 0 — Eq — — — — — —

By comparing the joint GAM results with the simple GAM and GP model results, some

significant differences can be printed out:

• The kd1 first order sensitivity index is overestimated using the simple GAM and GP

model (14.0% and 12.6% instead of 3.7% for the joint GAM). Indeed, the deviance

analysis of the joint GAM dispersion component shows a high contribution of kd1, which

means that the interaction between kd1 and the uncontrolable parameter is probably

large. For a standard metamodel, like the simple GAM and GP models, this interaction

is not found out and leads to a wrong estimation of the first order sensitivity index of

kd1.

• For the simple metamodels, using the relation ST (ε) = 1−Q2, the total sensitivity index

of the uncontrolable parameter is underestimated: 23.5% (simple GAM) and 19.6% (GP

model) instead of 27.7% (joint GAM). The classical metamodels tend to explain some
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parts of the data which can be adequately included in the dispersion component of the

joint GAM during the iterative fitting algorithm.

• Contrary to the other metamodels, the joint GAM allows to prove that only kd1 and

kd2 interact with the uncontrolable parameter.

As a conclusion, these sensitivity analysis results will be very useful to the physicist or the

modeling engineer during the model construction and calibration steps. In this specific appli-

cation, the sensitivity analysis shows that the geometry of the second hydrogeological layer

has a strong influence (up to 28%) on the predicted 90Sr concentration. Therefore, an accurate

modeling of this geometry, coupled with a better knowledge of the most influential parameter

kd2, are the key steps to an important reduction of the model prediction uncertainties.

5 CONCLUSION

This paper proposes a solution to resolve the problem of uncertainty and sensitivity analyses

on stochastic computer models (Kleijnen [12]). A natural solution is to model the mean

and the dispersion of the code outputs by two explanatory models. The classical way is to

separately build these models. In this paper, the use of the joint modeling is preferred. This

theory, proposed by Pregibon [20] and extensively developed by Nelder [17], is a powerful tool

to fit the mean and dispersion components simultaneously. Zabalza et al. [35] already applied

this approach to model stochastic computer code. However, the behavior of some numerical

models can be highly complex and non linear. In the present paper, some examples show

the limit of this parametric joint model. Being inspired by Rigby & Stasinopoulos [23] who

use non parametric joint additive models (restricted to Gaussian cases), we propose to use a

more general framework using GAMs. Like GLMs, GAMs are a suited framework because it

allows variable and model selections via quasi-likelihood function, classical statistical tests on

coefficients and graphical displays.

An analytic case on the Ishigami function shows that the joint GAM is adapted to complex

heteroscedastic situations where classical response surfaces are inadequate. Moreover, it offers

a theoretical basis to compute Sobol sensitivity indices in an efficient way. The performance
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of the Joint GAM approach was assessed on an industrial application. Compared to other

methods, the modeling of the dispersion component allows to obtain a robust estimation of

the total sensitivity index of the uncontrolable parameter, which leads to correct estimations

of the first order indices of the controlable parameters. In addition, it reveals the influential

interactions between the uncontrolable parameter and the other input parameters.

The joint GAM has proven its flexibility to fit complex data: we have obtained the same

performance for its mean component as the powerful Gaussian Process model. Moreover, the

analytical formulas available with the joint GAM are very useful to complete the sensitivity

analysis results and to improve our model understanding and knowledge. Finally, the joint

GAM can also serve in propagation uncertainty and reliability studies of complex models, with

unquantifiable random input variables, to obtain some mean predictions with their confidence

intervals.

For some applications, joint GAM could be inadequate, and other models can be proposed.

For example, for Gaussian observations, Juutilainen & Röning [11] have used a neural network

model for mean and dispersion. It is shown to be more efficient than joint GLM and joint

additive models in a context of numerous explanatory variables (25) and of a large amount

of data (100000). Moreover, in the joint GAM as in the joint GLM, only diagnosis tools

to analyze separately the two components of the joint model are available. It would be very

convenient in the future to have accurate tools to analyse the two components simultaneously.

In the whole, all statistical analysis were performed using the R software environment

[21]. In particular, the following functions and packages were useful: the “glm” function to fit

a simple GLM and the “mgcv” (Multiple Smoothing Parameter Estimation by GCV) package

to fit a simple GAM. We also developed the “JointModeling” package to fit joint models

(including joint GLM and joint GAM).
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