Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Physics Année : 2008

Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system

Résumé

We describe the asymptotic behavior as time goes to infinity of solutions of the 2 dimensional corotational wave map system and of solutions to the 4 dimensional, radially symmetric Yang-Mills equation, in the critical energy space, with data of energy smaller than or equal to a harmonic map of minimal energy. An alternative holds: either the data is the harmonic map and the solution is constant in time, or the solution scatters in infinite time.
Fichier principal
Vignette du fichier
wmscattering.pdf (345.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00221387 , version 1 (14-02-2020)

Identifiants

Citer

Raphaël Côte, Carlos Kenig, Frank Merle. Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system. Communications in Mathematical Physics, 2008, 284 (1), pp.203-225. ⟨10.1007/s00220-008-0604-4⟩. ⟨hal-00221387⟩
158 Consultations
64 Téléchargements

Altmetric

Partager

More