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Scattering below critical energy for the radial 4D Yang-Mills

equation and for the 2D corotational wave map system

Raphaël Côte∗ Carlos E. Kenig† Frank Merle‡

March 23, 2009

Abstract

Given g and f = gg′, we consider solutions to the following non linear wave equation :{
utt − urr −

1
r
ur = −f(u)

r2
,

(u, ut)|t=0 = (u0, u1).

Under suitable assumptions on g, this equation admits non-constant stationary solutions :

we denote Q one with least energy. We caracterize completely the behavior as time goes to

±∞ of solutions (u, ut) corresponding to data with energy less than or equal to the energy

of Q : either it is (Q, 0) up to scaling, or it scatters in the energy space.

Our results include the cases of the 2 dimensional corotational wave map system, with

target S2, in the critical energy space, as well as the 4 dimensional, radially symmetric

Yang-Mills �elds on Minkowski space, in the critical energy space.

1 Introduction

In this paper we study the asymptotic behavior of solutions to a class of non-linear wave
equations in R × R, with data in the natural energy space. The equations covered by our
results include the 2 dimensional corotational wave map system, with target S2, in the critical
energy space, as well as the 4 dimensional, radially symmetric Yang-Mills �elds on Minkowski
space, in the critical energy space.

The equations under consideration admit non-constant solutions that are independent of
time, of minimal energy, the so-called harmonic maps Q (see [3] and the discussion below). It
is known, from the work of Struwe [13], that if the data has energy smaller than or equal to the
energy of Q, then the corresponding solution exists globally in time (see Proposition 1 below).
(A recent result [8] shows that large energy data may lead to a �nite time blow up solution for
the 2 dimensional corotational wave map system, with target S2 � see also [9]). In this paper,
we show that, for this class of solutions, an alternative holds : either the data is (Q, 0) (or
(−Q, 0) if −Q is also a harmonic map), modulo the natural symmetries of the problem, and
the solution is independent of time, or a (suitable) space-time norm is �nite, which results in
the scattering at times ±∞. Thus the asymptotic behavior as t→ ±∞ for solutions of energy
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smaller than or equal to that of Q, is completely described. Because of the existence of Q, the
result is clearly sharp.

The result is inspired by the recent works [6, 5] of the last two authors, who developed a
method to attack such problems, reducing them, by a concentration-compactness approach, to
a rigidity theorem. An important element in the proof of the rigidity theorem in [6, 5] is the
use of a virial identity. This is also the case in this work, where the virial identity we use in the
proof of Lemma 8 is very close to the one used in Lemma 5.4 of [5]. Lemma 8 in turn follows
from Lemma 7, which has its origin in the work of the �rst author [3]. The concentration-
compactness approach we use here is the same as the one in [5], with an important proviso.
The results in [5] are established for dimension N = 3, 4, 5, while here, in order to include
the case of radial Yang-Mills in R4, we need to deal with a case similar to N = 6 ; it also
establishes the result in [5] for N = 6. This is carried out in Theorem 2 below.

It is conjectured that similar results will hold without the restriction to data with symmetry
(for wave maps or Yang-Mills �elds). These are extremely challenging problems for future
research.

We now turn to a more detailed description of our results. Let g : R → R be C3 such
that g(0) = 0, g′(0) = k ∈ N∗, denote f = gg′, and N be the surface of revolution with polar
coordinates (ρ, θ) ∈ [0,∞)×S1, and metric ds2 = dρ2 + g2(ρ)dθ2 (hence N is fully determined
by g).

We consider u, an equivariant wave map in dimension 2 with target N , or a radial solution
to the critical Yang-Mills equations in dimension 4, that is, a solution to the following problem
(see [10] for the derivation of the equation). utt − urr −

1
r
ur = −f(u)

r2
,

(u, ut)|t=0 = (u0, u1).
(1)

At least formally, the energy is conserved by such wave maps :

E(u, ut) =
∫ (

u2
t + u2

r +
g2(u)
r2

)
rdr = E(u0, u1).

Shatah and Tahvildar-Zadeh [11] proved that (1) is locally well posed in the energy space

H× L2 = {(u0, u1)|E(u0, u1) <∞.}.

For such wave maps, energy is preserved.
From Struwe [13] we have the following dichotomy regarding long time existence of solutions

to (1), depending on the geometry of the target manifold N , and thus on g :

• If g(ρ) > 0 for all ρ > 0 (and
∫∞
0 g(ρ)dρ =∞, to prevent a sphere at in�nity), then any

�nite energy wave map is global in time.

• Otherwise there exists a non-constant harmonic map Q, and one may have blow up (cf.
[9, 8]).

Our goal in this paper is to study the latter case, and to describe the dynamics of equivariant
wave maps and of radial solutions to the critical Yang-Mills equations in dimension 4, with
energy smaller or equal to E(Q).
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1.1 Statement of the result

Notations and Assumptions :

Denote by v = W (t)(u0, u1) the solution to utt − urr −
1
r
ur −

k2

r2
u = 0,

(u, ut)|t=0 = (u0, u1).
(2)

W (t) is the linear operator associated with the wave equation with a quadratic potential.
For a single function u, we use E(u) for E(u, 0), with a slight abuse of notation, and we

also use

Eba(u) =
∫ b

a

(
u2
r +

g2(u)
r2

)
rdr.

To avoid degeneracy (existence of in�nitely small spheres), we assume that the set of points
where g vanishes is discrete. Denote G(ρ) =

∫ ρ
0 |g|. G is an increasing function. We make the

following assumptions on g (that is on N , the wave map target) :

(A1) g vanishes at some point other than 0, and we denote C∗ > 0 the smallest positive real
satisfying g(C∗) = 0.

(A2) g′(0) = k ∈ {1, 2} and if k = 1, we also have g′′(0) = 0.

(A3) g′(−ρ) ≥ g′(ρ) for ρ ∈ [0, C∗] and g′(ρ) ≥ 0 for all ρ ∈ [0, D∗], where we denote by D∗

the point in [0, C∗] such that G(D∗) = G(C∗)/2.

The �rst assumption is a necessary and su�cient condition on g for the existence of station-
ary solutions to (1), that is, non-constant harmonic maps. Hence denote Q ∈ H the solution
to rQr = g(Q), with Q(0) = 0, Q(∞) = C∗ and Q(1) = C∗/2, so that (Q, 0) is a stationary
wave map (see [3] for more details). Note that

E(Q) = 2G(C∗).

The second assumption is a technical one : the restriction on the range of k should be remov-
able using harmonic analysis. Recall that k ∈ N∗, and for equivariant wave maps, one usually
assumes g odd. To remain at a lower level of technicality, we stick to the two assumptions in
(A2) which encompass the cases of greater interest (see below).

The �rst part of third assumption is a way to ensure that Q is a non-constant harmonic
map (with Q(0) = 0) with least energy. The second part arises crucially in the proof of some
positivity estimates. This assumption could be somehow relaxed, but as such encompasses the
two cases below, avoiding technicalities which are beside the point. We conjecture that this
assumption is removable.

These assumptions encompass

• corotational equivariant wave maps to the sphere S2 in energy critical dimension n = 2
(g(u) = sinu, f(u) = sin(2u)/2), k = 1 � we refer to [10] for more details).

• the critical (4-dimensional) radial Yang-Mills equation (f(u) = 2u(1−u2), g(u) = (1−u2),
notice that to enter our setting we should consider g̃(u) = g(u− 1) = u(2− u), k = 2 �
we refer to [2] for more details).
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Recall that if u ∈ H, then u has �nite limits at r → 0 and r →∞, which are zeroes of g :
we denote them by u(0) and u(∞) (see [3, Lemma 1]). We can now introduce

V(δ) = {(u0, u1) ∈ H × L2|E(u0, u1) < E(Q) + δ, u0(0) = u0(∞) = 0}. (3)

Denote H =
{
u|‖u‖2H =

∫ (
u2
r + u2

r2

)
rdr <∞

}
. As we shall see below (Lemma 2), for δ ≤

E(Q), V(δ) is naturally endowed with the Hilbert norm

‖(u0, u1)‖2H×L2 = ‖u0‖2H + ‖u1‖2L2 =
∫ (

u2
1 + u0

2
r +

u2
0

r2

)
rdr. (4)

Finally, for I an interval of time, introduce the Strichartz space S(I) = L
2k+3
k

t∈I (dt)L
2k+3
k (r−2dr)

and
‖u‖S(I) = ‖u‖

L
2+3/k
t∈I (dt)L

2+3/k
r (r−2dr)

.

Notice that S(I) is simply the Strichartz space L2+3/k
t,x adapted to the energy critical wave

equation in dimension 2k+2 (see [5]), under the conjugation by the map u 7→ u/rk. This space
appears naturally, see Section 3 for further details.

Theorem 1. Assume k = 1 or k = 2, and g satis�es (A1), (A2) and (A3). There exists δ =
δ(g) > 0 such that the following holds. Let (u0, u1) ∈ V(δ) and denote by u(t) the corresponding
wave map. Then u(t) is global in time, and scatters, in the sense that ‖u‖S(R) < ∞. As a

consequence, there exist (u±0 , u
±
1 ) ∈ H × L2 such that

‖u(t)−W (t)(u±0 , u
±
1 )‖H×L2 → 0 as t→ ±∞.

As a direct consequence, we have the following

Corollary 1. Let (u0, u1) be such that E(u0, u1) ≤ E(Q, 0), and denote by u(t) the corre-
sponding wave map. Then u(t) is global and we have the following dichotomy :

• If u0 = Q (or u0 = −Q if −Q is a harmonic map) up to scaling, then u(t) is a constant
harmonic map (ut(t) = 0).

• Otherwise u(t) scatters, in the sense that there exist (u±0 , u
±
1 ) ∈ H × L2 such that

‖u(t)−W (t)(u±0 , u
±
1 )‖H×L2 → 0 as t→ ±∞.

Remark 1. The fact that u(t) is global in time is a direct corollary of [13] (in fact one has
global well posedness in V(E(Q)) as recalled in Proposition 1). The new point in our result is
linear scattering.

Remark 2. We conjecture that δ = E(Q). The only point missing for this is to improve Lemma
7 to δ = E(Q).

Remark 3. This result corresponds to what is expected in a �focusing� setting. Similarly, there
is a defocusing setting, in the case g(ρ) > 0 for ρ > 0. Arguing in the same way as in Theorem
1, we can prove that if g sati�es (A2), (A3) and g′(ρ) ≥ 0 for all ρ ∈ R, then any wave map is
global and scatters in the sense of Theorem 1. Again, we conjecture that the correct assumptions
for this result are g(ρ) > 0 for ρ > 0 and G(ρ) → ±∞ as ρ → ±∞ (to prevent a sphere at
in�nity).
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2 Variational results and global well posedness in V(E(Q))

First recall the pointwise bound derived from the energy

∀r, r′ ∈ R+, |G(u(r))−G(u(r′))| ≤ 1
2
Er
′
r (u), (5)

with equality at points r, r′ if and only if there exist λ > 0 and ε ∈ {−1, 1} such that

∀ρ ∈ [r, r′], u(ρ) = εQ(λρ).

(See [3, Proposition 1].)

Lemma 1 (V(δ) is stable through the wave map �ow). If u ∈ H, u is continuous and has limits
at 0 and ∞ which are points where g vanishes : we denote them u(0) and u(∞). Furthermore
if u(t) is a �nite energy wave map de�ned on some interval I containing 0, then for all t ∈ I,

∀t ∈ I, u(t, 0) = u(0, 0) and u(t,∞) = u(0,∞).

In particular, for all δ ≥ 0, V(δ) is preserved under the wave map �ow.

Proof. The properties of u are well known : see [10] or [3]. Let us prove that the u(t, 0) is
constant in time by a continuity argument.

For all y such that g(y) = 0, denote Iy = {t ∈ I|u(t, 0) = y}. Let t ∈ I.
As g vanishes on a discrete set, denote ε > 0 such that if g(ρ) = 0, |G(ρ)−G(u(t, 0))| ≥ 2ε.

Since u is de�ned in I, it does not concentrate energy in a neighbourhood of (t, 0) : there exists
δ0, δ1 > 0 such that

∀τ ∈ [t− δ0, t+ δ0], Eδ10 (u(τ)) ≤ ε.

From this and the pointwise bound, we deduce

∀τ ∈ [t− δ0, t+ δ0], ∀r ∈ [0, δ1], |G(u(τ), 0)−G(u(τ, r)| ≤ ε/2.

Now compute for t′ ∈ [t− δ0, t+ δ0] :∣∣∣∣∫ δ1

0
G(u)(t, ρ)dρ−

∫ δ1

0
G(u)(t′, ρ)dρ

∣∣∣∣ ≤ ∫ δ1

0

∫ t′

t
g(u(τ, ρ)|ut(τ, ρ)|dτdρ

≤ 1
2

∫ t′

t
E(u)dτ ≤ 1

2
E(u)|t− t′|.

Suppose t′ is such that u(t, 0) 6= u(t′, 0), and then |G(u)(t, 0)−G(u)(t′, 0)| ≥ 2ε. Then∣∣∣∣∫ δ1

0
G(u)(t, ρ)dρ−

∫ δ1

0
G(u)(t′, ρ)dρ

∣∣∣∣
≥
∣∣∣∣∫ δ1

0
((G(u)(t, ρ)−G(u)(t, 0)) + (G(u)(t, 0)−G(u)(t′, 0)) +G(u)(t′, 0)−G(u)(t′, ρ)))dρ

∣∣∣∣
≥ δ1(2ε− ε/2− ε/2) ≥ δ1ε.

We just proved that
1
2
E(u)|t′ − t| ≥ εδ1.

This means that Iu(t,0) is open in I. In the same way, I \ Iu(t,0) =
⋃
y, y 6=u(t,0) Iy is also open in

I, so that Iu(t,0) is closed in I. As I is connected, I = Iu(t,0).
Similarly, one can prove that u(t,∞) is constant in time. The rest of the Lemma follows

from conservation of energy.
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Lemma 2. There exists an increasing function K : [0, 2E(Q)) → [0, C∗), and a decreasing
function δ : [0, 2E(Q))→ (0, 1] such that the following holds. For all u ∈ H such that E(u) <
2E(Q), and u(0) = u(∞) = 0, one has the pointwise bound

∀r, |u(r)| ≤ K(E(u)) < C∗.

Moreover, one has
δ(E(u))‖u‖H ≤ E(u) ≤ ‖g′‖L∞‖u‖H .

Proof. From the pointwise bound (5), we have

|G(u)(r)| = |G(u)(r)−G(u)(0)| ≤ 1
2
Er0(u), |G(u)(r)| ≤ 1

2
E∞r (u).

So that 2|G(u)(r)| ≤ E(u) < 2E(Q). As G is an increasing function on [−E(Q), E(Q)], and
|G(−ρ)| ≥ G(ρ) for ρ ∈ [0, C∗], we obtain

|u(r)| ≤ G−1(E(u)/2) < G−1(E(Q)) = C∗.

Then K(ρ) = G−1(ρ/2) �ts.
We now turn to the second line. For the upper bound, notice that g(0) = 0 so that g2(ρ) ≤

‖g′‖2L∞ρ2, and ‖g′‖L∞ ≥ |g′(0)| ≥ 1.
For the lower bound, notice that as |u| ≤ K(E(u)) < C∗, then g2(u) ≥ δ(E(u))u2 for some

positive continuous function δ : (−C∗, C∗) → (0, 1] (g(ρ)/ρ is a continuous positive function
on (−C∗, C∗), δ(ρ) = min(1, inf{g(r)/r | |r| ≤ ρ})).

Proposition 1 (Struwe [13]). Let (u0, u1) ∈ V(E(Q)). Then the corresponding wave map is
global in time, and satis�es the bound

∀t, r |u(t, r)| ≤ K(E(u0, u1)).

Proof. Indeed suppose that u blows-up, say at time T . By Struwe [13], there exists a non-
constant harmonic map Q̃, and two sequences tn ↑ T and λ(tn) such that λ(tn)|T − tn| → ∞
and

un(t, r) = u

(
tn +

t

λ(tn)
,

r

λ(tn)

)
→ Q̃(r) Hloc(]− 1, 1[t×Rr).

From Lemma 1, one deduces Q̃(0) = 0, and hence (with assumption (A3)) |Q̃(∞)| ≥ C∗.
However, as (u, ut) ∈ V(E(Q)), from Lemma 2, |u(t, r)| ≤ K(E(u)) < C∗ (uniformly in t).

Now {r ≥ 0||Q̃(r)| ≥ (K(E(u))+C∗)/2} is an interval of the form [AE(u),∞) (Q̃ is monotone)
so that ∫

t∈[−1/2,1/2]

∫
[AE(u),AE(u)+1]

|un(t, r)− Q̃(r)|2rdrdt ≥ (C∗ −K(E(u)))2/4 9 0.

This is in contradiction with the Hloc convergence : hence u is global.

3 Local Cauchy problem revisited

Denote ∆ = ∂rr + 2k+1
r ∂r = 1

r2k+1∂r(r2k+1∂r) the radial Laplacian in dimension R2k+2 and
U(t) the linear wave operator in R2k+2 :

U(t)(v0, v1) = cos(t
√
−∆)v0 +

√
−∆ sin(t

√
−∆)v1.
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Notice that
W (t)(u0, u1) = rkU(t)(u0/r

k, u1/r
k), (6)

as v solves vtt −∆v = 0 if and only if rkv solves (2).
Given an interval I of R, denote

‖v‖N(I) = ‖v(t, x)‖N(t∈I)

= ‖v‖L∞t∈IḢ1
x

+ ‖v‖
L

2k+3
k

t∈I,x

+ ‖v‖
L

2(2k+3)
2k+1

t∈I Ẇ
1/2,

2(2k+3)
2k+1

x

+ ‖v‖
W 1,∞
t∈I L

2
x
, (7)

where the space variable x belongs to R2k+2. This norm appears in the Strichartz estimate
(Lemma 6).

Theorem 2. Assume k = 1 or 2. Problem (1) is locally well-posed in the space H in the
sense that there exist two functions δ0, C : [0,∞) → (0,∞) such that the following holds. Let
(u0, u1) ∈ H × L2 be such that ‖u0, u1‖H×L2 ≤ A, and let I be an open interval containing 0
such that

‖W (t)(u0, u1)‖S(I) = η ≤ δ0(A).

Then there exist a unique solution u ∈ C(I,H) ∩ S(I) to Problem (1) and ‖u‖S(I) ≤ C(A)η,
(and we also have ‖u/rk‖N(I) ≤ C(A) and E(u, ut) = E(u0, u1)).

As a consequence, if u is such a solution de�ned on I = R+, satisfying ‖u‖S(R+) < ∞,

there exist (u+
0 , u

+
1 ) ∈ H × L2 such that

‖u(t)−W (t)(u+
0 , u

+
1 )‖H×L2 → 0 as t→ +∞.

3.1 Preliminary lemmas

Let us �rst recall some useful lemmas. We consider Ds = (−∆)s/2 the fractional derivative
operator and the homogeneous Sobolev space

Ẇ s,p = Ẇ s,p(Rn) =
{
ϕ ∈ S ′(Rn)

∣∣∣ ‖ϕ‖Ẇ s,p

def= ‖Dsϕ‖Lp <∞
}
.

For integer s, it is well known that ‖ · ‖Ẇ s,p is equivalent to the Sobolev semi-norm :

‖ϕ‖Ẇ s,p ∼ ‖∇sϕ‖Lp .

Lemma 3 (Hardy-Sobolev embedding). Let n ≥ 3, and p, q, α, β ≥ 0 be such that 1 ≤ q ≤ p ≤
∞, and 0 < (β − α)q < n. There exist C = C(n, p, q, α, β) such that for all ϕ radial in Rn,

‖r
n
q
−n
p
−β+α

ϕ‖Ẇα,p ≤ C‖ϕ‖Ẇβ,q .

Proof. Given n, p, q and β, we show the estimate for α in the suitable range.
The case α = 0 is the standard Hardy inequality in Lp combined with the Sobolev embed-

ding (see [11] and the references therein - where the conditions n ≥ 3, 1 ≤ q ≤ p ≤ ∞ and
0 < β < n are required). If α is an integer, we use the Sobolev semi-norm : as

∂αr (rγv) =
α∑
k=0

ckr
γ−k∂α−γr v,

the inequality follows from the case α = 0.
In the general case, let α = k+θ for k ∈ N and θ ∈]0, 1[, and γ = n

q −
n
p −β+α . We de�ne

` so that β = `+ θ, hence n
q −

n
p − `+ k = γ. We consider the operator T : ϕ 7→ Dk(rγD−`ϕ) :

7



T maps Lq to Lp and Ẇ 1,q to Ẇ 1,p (integer case). By complex interpolation (see [12]), T maps
[Lq, Ẇ 1,q]θ = Ẇ θ,q to [Lp, Ẇ 1,p]θ = Ẇ θ,p. This means that

‖rγϕ‖Ẇk+θ,p ≤ C‖ϕ‖Ẇ `+θ,q ,

which is what we needed to prove.

Lemma 4. If v = u/rk, then

1
3

∫
v2
rr

2k+1dr ≤
∫ (

u2
r +

u2

r2

)
rdr ≤ (k2 + 1)

∫
v2
rr

2k+1dr.

Proof. First notice that vr = −ku/rk+1 + ur/r
k, hence v2

r ≤ (k2 + 1)(u2/r2k+2 + u2
r/r

2k) and∫
v2
rr

2k+1dr ≤ (k2 + 1)
∫ (

u2
r +

u2

r2

)
rdr.

Then from the Hardy-Sobolev inequality in dimension 2k + 2 ≥ 3 (optimal constant is 1/k2),∫
u2

r2
rdr =

∫
v2

r2
r2k+1dr ≤ 1

k2

∫
v2
rr

2k+1dr.

As ur = rkvr + ku/r, u2
r ≤ 2r2kv2

r + 2k2u2/r2 and∫ (
u2
r +

u2

r2

)
rdr ≤

(
2 +

1
k2

)∫
v2
rr

2k+1rdr.

Lemma 5 (Derivation rules). Let 1 < p <∞, 0 < α < 1. Then

‖Dα(ϕψ)‖Lp ≤ C‖ϕ‖Lp1‖Dαψ‖Lp2 + ‖Dαϕ‖Lp3‖ψ‖Lp4 ,
‖Dα(h(ϕ))‖Lp ≤ C‖h′(ϕ)‖Lp1‖Dαϕ‖Lp2 .

‖Dα(h(ϕ)− h(ψ))‖Lp ≤ C(‖h′(ϕ)‖Lp1 + ‖h′(ψ)‖Lp1 )‖Dα(ϕ− ψ)‖Lp2
+ C(‖h′′(ϕ)‖Lr1 + h′′(ψ)‖Lr1 )(‖Dαϕ‖Lr2 + ‖Dαψ‖Lr2 )‖ϕ− ψ‖Lr3 ,

where 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
= 1

r1
+ 1

r2
+ 1

r3
, and 1 < p2, p3, r1, r2, r3 <∞.

Proof. See [7, Theorem A.6 and A.8] with functions which do not depend on times, [7, Theorem
A.7 and A.12] and [5, Lemma 2.5].

From now on, we work in dimension 2k+ 2 (radial), and the underlying measure is r2k+1dr
unless otherwise stated. In particular, notice that from Lemma 5, we have :

‖D1/2(ϕψ)‖
L

2(2k+3)
2k+5

≤ ‖D1/2ϕ‖
L

2(2k+3)
2k+5

‖ψ‖L∞ + ‖ϕ‖
L

4(2k2+5k+3)

4k2+12k+7

‖D1/2ψ‖L4(k+1) . (8)

Recall

w = cos(t
√
−∆)v0 +

sin(t
√
−∆)√
−∆

v1 +
∫ t

0

sin((t− s)
√
−∆)√

−∆
χ(s)ds

solves the problem {
wtt −∆w = χ,
(w,wt)|t=0 = (v0, v1),
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Lemma 6 (Strichartz estimate). Let I be an interval. There exist a constant C (not depending
on I) such that (in dimension 2k + 2),

‖ cos(t
√
−∆)v0‖N(R) ≤ C‖v0‖Ḣ1

x
,

‖sin(t
√
−∆)√
−∆

v1‖N(R) ≤ ‖v1‖L2
x
,

‖
∫ t

0

sin((t− s)
√
−∆)√

−∆
χ(s)ds‖N(I) ≤ ‖D1/2

x χ‖
L

2(2k+3)
2k+5

t∈I L

2(2k+3)
2k+5

x

.

Proof. This result is well-known : see [5] and the references therein.

3.2 Proofs of Theorem 2 in the case k = 1 and k = 2

Proof of Theorem 2. Denote v = u/rk. Then vr = ur/r
k − ku/rk+1, vrr = urr

rk
− 2kur

rk+1 + k(k +
1) u
rk+2 , so that  vtt − vrr − (2k + 1)

vr
r

= −f(rkv)− k2rkv

(rkv)1+2/k
v1+2/k,

(v, vt)|t=0 = (v0, v1) = (u0/r
k, u1/r

k).
(9)

This is something like the energy critical wave equation in dimension 2k+2. For the rest of this
section, the underlying dimension will always be 2k + 2, in particular, Lebesgue and Sobolev
space will be de�ned with respect to the measure r2k+1dr (as we are in a radial setting).

Denote

h(ρ) =
f(ρ)− k2ρ

ρ1+2/k
.

Assume that h, h′ and h′′ are bounded on compact sets : this is automatic if g is C3 and sati�es
(A2). Indeed if k = 2, 1 + 2/k = 2 and it is a direct application of Taylor's expansion, and if
k = 1, 1 + 2/k = 3, and it su�ces to notice additionally that f ′′(0) = 3kg′′(0) = 0).

Our assumptions on (u0, u1) translate to :

‖v0‖Ḣ1 + ‖v1‖L2 ≤ CA, ‖U(t)(v0, v1)‖
L

2+3/k
t∈I L

2+3/k
r

≤ Cη.

Consider the map Φ :

Φ : v 7→ cos(t
√
−∆)v0 +

sin(t
√
−∆)√
−∆

v1 +
∫ t

0

sin((t− s)
√
−∆)√

−∆
(v1+2/k(s)h(rkv)(s))ds,

that is Φ(v) solves the (linear in Φ(v)) equation Φ(v)tt − Φ(v)rr − (2k + 1)
Φ(v)r
r

= −h(rkv)v1+2/k,

(v, vt)|t=0 = (v0, v1) = (u0/r
k, u1/r

k).
(10)

We will �nd a �xed point for Φ, related to smallness in the norm :

‖v‖
L

2+3/k
t∈I,r

and ‖D1/2v‖
L

2(2k+3)/(2k+1)
t∈I,r

.

The Strichartz estimate shows that we are to control ‖D1/2
r (v1+2/kh(r1+2/kv))‖

L

2(2k+3)
2k+5

t∈I,r

. For

convenience in the following, denote :

p =
4(k + 2)(2k2 + 5k + 3)

4k(k2 + 12k + 7)
.
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Now, we use (8) together with Lemma 3 and Lemma 5 :

‖D1/2(v1+2/kh(rkv))‖
L

2(2k+3)
2k+5

≤ ‖D1/2(v1+2/k)‖
L

2(2k+3)
2k+5

‖h(rkv)‖L∞ + ‖v1+2/k‖
L

4(2k2+5k+3)

4k2+12k+7

‖D1/2h(rkv)‖L4(k+1)

≤ C‖v2/k‖Lk+3/2‖D1/2v‖
L

2(2k+3)
2k+1

‖h(rkv)‖L∞ + C‖v‖1+2/k
Lp ‖h′(rkv)‖L∞‖rkv‖Ẇ 1/2,4(k+1)

≤ C‖v‖2/k
L2+3/k‖D1/2v‖

L
2(2k+3)
2k+1

‖h(rkv)‖L∞ + C‖v‖1+2/k
Lp ‖h′(rkv)‖L∞‖vr‖L2 .

From interpolation of Lebesgue spaces and Hölder inequality,

∥∥∥‖v‖1+2/k
Lp

∥∥∥
L

2(2k+3)
2k+5

t

=

∥∥∥∥∥‖v‖
L

4(k+2)(2k2+5k+3)

k(4k2+12k+7)
r

∥∥∥∥∥
1+2/k

L
(1+2/k)(2(2k+3)/(2k+5)
t

≤ ‖v‖2/k
L

2+3/k
t,r

‖v‖
L

2(2k+3)/(2k+1)
t L

4(2k+3)(k+1)

4k2+4k−1
r

≤ ‖v‖2/k
L

2+3/k
t,r

‖D1/2
r v‖

L

2(2k+3)
2k+1

t,r

and (11)∥∥∥∥∥‖v‖2/kL
2+3/k
r

‖D1/2v‖
L

2(2k+3)
2k+1

r

∥∥∥∥∥
L

2(2k+3)
2k+5

t

≤
∥∥∥‖v‖2/k

L
2+3/k
r

∥∥∥
L
k+3/2
t

‖D1/2v‖
L

2(2k+3)
2k+1

t,r

≤ ‖v‖2/k
L

2+3/k
t,r

‖D1/2
r v‖

L

2(2k+3)
2k+1

t,r

. (12)

Using again Lemma 3 to show ‖rkv‖L∞ ≤ C‖vr‖L2 , we hence get our main estimate, for some
increasing function ω (ω is a function of h, h′ and essentially the constant in the Strichartz
estimate, and does not depend on I or v) :

‖D1/2
x (v1+2/kh(rkv))‖

L

2(2k+3)
2k+5

t∈I,r

≤ ω(‖vr‖L∞t∈IL2
r
)‖v‖2/k

L
2+3/k
t∈I,r
‖D1/2v‖

L

2(2k+3)
2k+1

t∈I,r

. (13)

We now turn to di�erence estimates. Using the same inequalities, we get :

‖D1/2(v1+2/kh(rkv)− w1+2/kh(rkw))‖
L

2(2k+3)
2k+5

r

≤ C‖D1/2
(

(v1+2/k − w1+2/k)h(rkv)
)
‖
L

2(2k+3)
2k+5

+ C

∥∥∥∥D1/2

(
rkw1+2/k(v − w)

∫ 1

0
h′(θrk(v − w) + rkw)dθ

)∥∥∥∥
L

2(2k+3)
2k+5

≤ ‖D1/2(v1+2/k − w1+2/k)‖
L

2(2k+3)
2k+5

‖h(rkv)‖L∞

+ ‖v1+2/k − w1+2/k‖
L

4(2k2+5k+3)

4k2+12k+7

‖D1/2h(rkv)‖L4(k+1)

+ ‖D1/2(rkw1+2/k(v − w))‖
L

2(2k+3)
2k+5

∥∥∥∥∫ 1

0
h′(θrk(v − w) + rkw)dθ

∥∥∥∥
L∞

+ ‖rkw1+2/k(v − w)‖
L

4(2k2+5k+3)

4k2+12k+7

∥∥∥∥∫ 1

0
D1/2(h′(θrk(v − w) + rkw))dθ

∥∥∥∥
L4(k+1)

≤ ‖D1/2(v1+2/k − w1+2/k)‖
L

2(2k+3)
2k+5

‖h(rkv)‖L∞

+ ‖v − w‖Lp(‖v‖2/kLp + ‖w‖2/kLp )‖h′(rkv)‖L∞‖vr‖L2
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+
(
‖D1/2(w2/k(v − w))‖

L
2(2k+3)
2k+5

‖rkw‖L∞ + ‖w2/k(v − w)‖
L

4(2k2+5k+3)

4k2+12k+7

‖D1/2(rkw)‖L4(k+1)

)
× sup
θ∈[0,1]

‖h′(rkv + θrk(w − v))‖L∞ + ‖rkw‖L∞‖w2/k(v − w)‖
L

4(2k2+5k+3)

4k2+12k+7

× sup
θ∈[0,1]

(
‖h′′(θrk(v − w) + rkw)‖L∞‖D1/2(rk(θv + (1− θ)w))‖L4(k+1)

)
.

Then we have as previously :

‖D1/2(w2/k(v − w))‖
L

2(2k+3)
2k+5

≤ C‖D1/2(v − w)‖
L

(2(2k+3)
2k+1

‖w2/k‖Lk+3/2 + C‖v − w‖L2+3/k‖D1/2(w2/k)‖
L

2(2k+3)
5

≤ C‖w‖2/k
L2+3/k‖D1/2(v − w)‖

L
(2(2k+3)

2k+1
+ ‖w‖2/k−1

L2+3/k‖D1/2w‖
L

(2(2k+3)
2k+1

‖v − w‖L2+3/k ,

‖w2/k(v − w)‖
L

4(2k2+5k+3)

4k2+12k+7

≤ ‖w‖2/kLp ‖v − w‖Lp .

Doing the computations in each case k = 1 or k = 2, we have that

‖D1/2(v3 − w3)‖L10/7 ≤ ‖D1/2v − w‖L10/3(‖v‖2L5 + ‖w2‖2L5)

+ ‖v − w‖L5(‖D1/2v‖L10/3 + ‖D1/2w‖L10/3)(‖v‖L5 + ‖w‖L5) and

‖D1/2(v2 − w2)‖L14/9 = ‖D1/2((v − w)(v + w))‖L14/9

≤ C‖D1/2(v − w)‖L14/5(‖v‖L7/2 + ‖w‖L7/2)

+ C‖v − w‖L7/2(‖D1/2v‖L14/5 + ‖D1/2w‖L14/5).

so that in both cases

‖D1/2(v1+2/k − w1+2/k)‖
L

2(2k+3)
2k+5

≤ C(‖v‖L2+3/k + ‖w‖L2+3/k)2/k−1

(
(‖v‖L2+3/k + ‖w‖L2+3/k)‖D1/2(v − w)‖

L
2(2k+3)
2k+1

+(‖D1/2v‖
L

2(2k+3)
2k+1

+ ‖D1/2w‖
L

2(2k+3)
2k+1

)
‖v − w‖L2+3/k).

Here, the assumption k ≤ 2 is crucially needed. Finally observe that

|θv + (1− θ)w| ≤ |v|+ |w|, |D1/2(θv + (1− θ)w) ≤ |D1/2v|+ |D1/2w|.

We can now summarize these computations, and using (11) and (12), we obtain the space time
di�erence estimate (up to a change in the function ω, which now depends on h, h′ and h′′, but
not on I or v) :

‖D1/2(v1+2/kh(rkv)− w1+2/kh(rkw))‖
L

2(2k+3)
2k+5

t∈I,r

≤ (ω(‖v‖L∞t∈IḢ1
r
) + ω(‖w‖L∞t∈IḢ1

r
))

× (‖v‖2/k−1

L
2+3/k
t∈I,r

+ ‖w‖2/k−1

L
2+3/k
t∈I,r

)

(
(‖v‖

L
2+3/k
t∈I,r

+ ‖w‖
L

2+3/k
t∈I,r

)‖D1/2(v − w)‖
L

2(2k+3)
2k+1

t∈I,r

+(‖D1/2v‖
L

2(2k+3)
2k+1

t∈I,r

+ ‖D1/2w‖
L

2(2k+3)
2k+1

t∈I,r

)‖v − w‖
L

2+3/k
t∈I,r

)
.
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Given a, b, A ∈ R+, I a time interval, introduce

B(a, b, A, I) =

{
v| ‖v‖

L
2+3/k
t∈I,r

≤ a, ‖D1/2v‖
L

2(2k+3)
2k+1

t∈I,r

≤ b, ‖v‖C(t∈I,Ḣ1
r ) ≤ 2CA

}
.

Hence for v ∈ B(a, b, A, I), we have

‖Φ(v)‖
L

2+3/k
t∈I,r

≤ ‖U(t)(v0, v1)‖
L

2+3/k
t∈I,r

+ ω(2CA)a2/kb

‖D1/2Φ(v)‖
L

2(2k+3)
2k+1

t∈I,r

≤ ‖D1/2U(t)(v0, v1)‖
L

2(2k+3)
2k+1

t∈I,r

+ ω(2CA)a2/kb

‖Φ(v)‖C(t∈I,Ḣ1) ≤ ‖(v0, v1)‖Ḣ1×L2 + ω(2CA)a2/kb,

‖Φ(v)− Φ(w)‖N(I) ≤ 2ω(2CA)a2/k−1b(‖D1/2(v − w)‖
L

2(2k+3)
2k+1

t∈I,r

+ ‖v − w‖
L

2+3/k
t∈I,r

)

Case k = 1
We compute 2 + 3/k = 5 and 2(2k+3)

2k+1 = 10/3.
Given A, set b = 2CA and δ0(A) = min(1, 1/C, 1

8CAω(2CA)). Then for (v0, v1) such that
‖(v0, v1)‖Ḣ1×L2 ≤ A and ‖U(t)(v0, v1)‖L5

t∈I,r
= η ≤ δ0(A), set a = 2η. Notice that the

Strichartz estimate gives
‖D1/2U(t)(v0, v1)‖

L
10/3
t∈I,r
≤ CA.

Our relations now write (the main point is 2/k − 1 = 1 > 0) :

‖Φ(v)‖L5
t∈I,r
≤ a

2
+ ω(2CA)(2δ0a)(2CA) ≤ a

‖D1/2Φ(v)‖
L

10/3
t∈I,r
≤ CA+ ω(2CA)(2δ0a)(2CA) ≤ 2CA

‖Φ(v)‖C(t∈I,Ḣ1) ≤ A+ ω(2CA)(2δ0a)(2CA) ≤ 2A,

‖Φ(v)− Φ(w)‖N(I) ≤
1
2

(‖D1/2(v − w)‖
L

10/3
t∈I,r

+ ‖v − w‖L5
t∈I,r

)

Hence Φ : B(a, 2CA,A, I) → B(a, 2CA,A, I) is a well de�ned 1/2-Lipschitz map, so that Φ
has a unique �xed point, which is our solution.

Case k = 2
We compute 2 + 3/k = 7/2, 2(2k+3)

2k+1 = 14/5 and 2(2k+3)
2k+5 = 14/9.

In this case 2/k− 1 = 0, so that the procedure used in the case k = 1 no longer applies (it
is the same problem as for the energy critical wave equation in dimension 6).

However, we still have a solution on an interval I where both quantities ‖U(t)(v0, v1)‖
L

7/2
t∈I,r

and ‖D1/2U(t)(v0, v1)‖
L

14/5
t∈I,r

are small.

Indeed, given A, set δ1(A) = min(1, 1
C ,

1
8ω(2CA)). For (v0, v1) such that ‖(v0, v1)‖Ḣ1×L2 ≤ A,

‖U(t)(v0, v1)‖
L

7/2
t∈I,r

= η ≤ δ1(A), and ‖D1/2U(t)(v0, v1)‖
L

14/5
t∈I,r

= η′ ≤ δ1(A), we set a = 2η and

b = 2η′. Then we have

‖Φ(v)‖
L

7/2
t∈I,r
≤ a

2
+ ω(2CA)a)(2δ0) ≤ a

‖D1/2Φ(v)‖
L

14/5
t∈I,r
≤ b

2
+ ω(2CA)(2δ1(A))b ≤ b

‖Φ(v)‖C(t∈I,Ḣ1) ≤ A+ ω(2CA)(2δ1(A))2 ≤ 2A,
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‖Φ(v)− Φ(w)‖N(I) ≤
1
2

(‖D1/2(v − w)‖
L

14/5
t∈I,r

+ ‖v − w‖
L

7/2
t∈I,r

)

Hence Φ : B(a, b, A, I)→ B(a, b, A, I) has a unique �xed point. We just proved the following
Claim : Let A > 0. There exist δ1(A) > 0 such that for (v0, v1) with ‖(v0, v1)‖Ḣ1×L2 ≤ A,

and I such that

‖U(t)(v0, v1)‖
L

7/2
t∈I,r

= η ≤ δ1(A), and ‖D1/2U(t)(v0, v1)‖
L

14/5
t∈I,r

= η′ ≤ δ1(A),

Then there exist a unique solution v(t) to (9) satisfying

‖(v, vt)‖L∞t∈I(Ḣ1×L2) ≤ 2A, ‖v‖
L

7/2
t∈I,r
≤ 2η, ‖D1/2v‖

L
14/5
t∈I,r
≤ 2η′.

Let us now do a small computation.
Given h, n ∈ N and 0 = t0 < t1 < . . . < tn = T (with T ∈ (0,∞]), we have for i = 0, . . . , n,

‖
∫ t

0

sin((t− s)
√
−∆)√

−∆
χ(s)ds‖N(ti,ti+1)

≤
i−1∑
j=0

‖
∫ tj+1

tj

sin((t− s)
√
−∆)√

−∆
χ(s)ds‖N(ti,ti+1) + ‖

∫ t

ti

sin((t− s)
√
−∆)√

−∆
χ(s)ds‖N(ti,ti+1)

≤
i−1∑
j=0

‖
∫ t

0

sin((t− s)
√
−∆)√

−∆
(χ(s)1s∈[tj ,tj+1])ds‖N(ti,ti+1)

+ ‖
∫ t

ti

sin((t− s)
√
−∆)√

−∆
(χ(s)1s∈[ti,ti+1])ds‖N(ti,ti+1)

≤
i−1∑
j=0

‖
∫ t

0

sin((t− s)
√
−∆)√

−∆
(χ(s)1s∈[tj ,tj+1])ds‖N(R)

+ ‖
∫ t

0

sin((t− s)
√
−∆)√

−∆
(χ(s)1s∈[ti,ti+1])ds‖N(R)

≤ C
i∑

j=0

‖D1/2
x χ(s)1s∈[tj ,tj+1]‖L14/9

s,x
≤ C

i∑
j=0

‖D1/2
x χ‖

L
14/9
t∈[tj ,tj+1]

L
14/9
x

(14)

Let us now complete the case k = 2. Let A > 0, de�ne n = n(A) such that n = n(A) =
1/(4CAω(2CA)), so that 2CAω(2CA)/n ≤ 1/2 and δ0(A) = δ1(A)/2n+2 (recall δ1(A) =
min(1, 1

C ,
1

8CAω(2CA))).
Let (v0, v1) be such that ‖v0, v1‖Ḣ1×L2 ≤ A and for I = (T0, T1) an interval (possibly with

in�nite endpoints), ‖U(t)(v0, v1)‖
L

7/2
t∈I,r

= η ≤ δ0(A).

From the Strichartz estimate, we also have

‖D1/2U(t)(v0, v1)‖
L

14/5
t∈I,r
≤ CA.

From (v0, v1), we have a solution v de�ned on a interval Ĩ = [0, T ). We choose J = (T ′0, T
′
1) ⊂ Ĩ

to be maximal such that

‖v‖
L

7/2
t∈J,r
≤ δ1(A), ‖D1/2v‖

L
14/5
t∈J,r
≤ 2CA, ‖v‖C(J,Ḣ1) ≤ 2CA.
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From the claim, we can choose J non empty. Let T ′0 = t0 < t1 < . . . tn = T ′1 be such that

∀i ∈ J0, n− 1K, ‖D1/2v‖
L14,5
t∈[ti,ti+1],r

≤ 2CA
n
≤ 1

2
1

ω(2CA)
.

From (13) and (14), we obtain

‖v‖N(J) ≤ CA+ ω(2CA)‖v‖
L

7/2
t∈J,r
‖v‖N(J),

‖v‖
L

7/2
t∈[ti,ti+1],r

≤ ‖U(t)(v0, v1)‖
L

7/2
t∈[ti,ti+1],r

+ ω(2CA)
i∑

j=0

‖v‖
L

7/2
t∈[tj ,tj+1],r

‖D1/2v‖
L

14/5
t∈[tj ,tj+1],r

.

Let us denote ai = ‖v‖
L

7/2
t∈[ti,ti+1],r

for i ∈ J0, n− 1K. Then we have

‖v‖N(J) ≤ CA+
1
4
‖D1/2v‖

L
14/5
t∈I,r
≤ 3/2CA < 2CA, (15)

ai ≤ η + ω(2CA)
i∑

j=0

aj
2ω(2CA)

or equivalently ai ≤ 2η +
i−1∑
j=0

aj .

By recurrence, we deduce that
ai ≤ 2i+1η.

In particular,

‖v‖
L

7/2
t∈JL

7/2
r

=
n−1∑
i=0

ai ≤ 2n+1η ≤ 2n+1δ0(A) < δ1(A). (16)

Hence, from with (15) and (16) and a standard continuity argument, we deduce that J = Ĩ = I,
‖v‖N(I) ≤ 2CA and ‖v‖

L
7/2
t∈I,r
≤ 2n+1η = c(A)η.

Going back to u, we obtain the �rst part of Theorem 2, in both cases k = 1 and k = 2
(conservation of energy is clear from the construction).

Let us now prove the consequence mentioned in Theorem 2. Given u, we associate v(t, r) =
u(t, r)/rk : v is de�ned on R+, and satis�es (9).

If we denoteA = ‖(u, ut)‖L∞t (H×L2), then there exist T large enough such that ‖u‖S([T,∞)) ≤
δ0(A). From the previous part, we have that

‖v‖N [T,∞) ≤ 2CA, ‖v‖
L

2+3/k
t∈[T,∞),r

≤ δ0(A).

Denote ν(t) = U(−t)v(t). Then

ν(t)− ν(s) =
∫ t

s
U(−τ)v1+2/k(τ)h(rkv)(τ)dτ.

Hence, for t ≥ s ≥ T , from the Strichartz estimate and (13), we have

‖ν(t)− ν(s)‖Ḣ1 + ‖νt(t)− νt(s)‖L2 ≤ ‖ν(τ)− ν(s)‖N(τ∈[s,t])

≤ ‖v1+2/k(τ)h(rkv)(τ)‖
L

2(2k+1)
2k+5

τ∈[s,t],r

≤ ω(2CA)‖v‖2/k
L

2+3/k
τ∈[s,t],r

(2CA)→ 0 as s, t→ +∞.

This means that (ν(t), νt(t)) is a Cauchy sequence in Ḣ1 × L2, hence converges to some
(v+, v+

t ) ∈ Ḣ1 × L2.
Going back to u, using Lemma 4 and remark (6), we obtain the second part of Theorem

2.
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4 Rigidity property

Recall that g is such that g(0) = 0, g′(0) = k ∈ N∗, with C∗ the smallest positive real such
that g(C∗) = 0, f = g′g and G(ρ) =

∫ ρ
0 |g|(ρ

′)dρ′ ; D∗ ∈ [0, C∗] is such that G(D∗) = G(C∗)/2.

Introduce the energy density e(u, v) = v2 + u2
r + g2(u)

r2
and p(u) = u2

r + g2(u)
r2

. Denote

E(u, v) =
∫
e(u, v)rdr, Eba(u, v) =

∫ b

a
e(u, v)rdr,

and similarly for a single function u

E(u) =
∫
p(u)rdr, Eba(u) =

∫ b

a
p(u)rdr.

We will also need the function d(ρ) = ρf(ρ), which is linked to the virial identity, and

F (u) =
∫ (

u2
r +

d(u)
r2

)
rdr.

The following variational Lemma is at the heart of the rigidity theorem. Here is the only point
where we use assumption (A3), which ensures that g′(ρ) ≥ 0 for ρ ∈ [−D∗, D∗].

Lemma 7. There exist c > 0 and δ ∈ (0, E(Q)) such that for all u such that (u, 0) ∈ V(δ), we
have

cE(u) ≤ F (u) ≤ 1
c
E(u).

Proof. Fix δ < E(Q). g2(u) ≥ ω(δ)u2 for some function ω : [0, E(Q)) → R+
∗ , and |d(x)| ≤

‖g′‖2L∞(−C∗,C∗)x
2 for |x| < C∗, so that

F (u) ≤

(
1 +
‖g′‖2L∞(−C∗,C∗)

ω(δ)

)
E(u),

which is the upper bound.
For the lower bound, we need assumption (A3) on g. Hence on [−D∗, D∗], d(x) ≥ 0, and

on [0, D∗], d(−x) ≥ d(x). Denote A =
∫ D∗
0

√
d(x)dx > 0. One easily sees that for a function

v : [a, b]→ [−D∗, D∗] such that v(a) = 0, |v(b)| = D∗ then∫ b

a

(
v2
r +

d(v)
r2

)
rdr ≥ 2

∫ b

a
|vr
√
d(v(r))|dr ≥ 2

∫ D∗

0

√
d(x)dx = 2A.

In the same way, ∫ b

a

(
v2
r +

g2(v)
r2

)
rdr ≥ 2G(D∗) = G(C∗).

Let δ > 0 to be determined later and u be such that (u, 0) ∈ V(δ). Recall that ‖u‖L∞ ≤
K(E(Q) + δ) < C∗ (Lemma 2), and hence g(u) ≥ ω(E(Q) + δ)|u|.

Assume �rst ‖u‖L∞ > D∗. Then let A1, A2 such that u ∈ [−D∗, D∗] on both intervals
[0, A1] and [A2,∞) and |u(A1)| = |u(A2)| = D∗. Then∫ (

u2
r +

d(u)
r2

)
rdr =

∫ A1

0
+
∫ A2

A1

+
∫ ∞
A2

≥ 4A+
∫ A2

A1

(
u2
r +

d(u)
r2

)
rdr
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Doing the same with the energy density, one gets∫ A1

0

(
u2
r +

g2(u)
r2

)
rdr +

∫ ∞
A2

(
u2
r +

g2(u)
r2

)
rdr ≥ 4G(D∗) = 2G(C∗) = E(Q).

Hence EA2
A1

(u) < δ. Now, we have

|d(u)| = |u||g′(u)||g(u)| ≤ ‖g′‖L∞ |u|g(u) ≤ ‖g′‖L∞
ω(E(Q) + δ)

g2(u),

so that∫ A2

A1

(
u2
r +

d(u)
r2

)
rdr ≥

∫ A2

A1

(
u2
r −

‖g′‖L∞
ω(E(Q) + δ)

g2(u)
r2

)
rdr ≥ − ‖g′‖L∞

ω(E(Q) + δ)
δ.

Finally, choosing δ > 0 small enough so that ‖g′‖L∞
ω(E(Q)+δ)δ ≤ 2A, we get∫ (

u2
r +

d(u)
r2

)
rdr ≥ 4A− ‖g′‖L∞

ω(E(Q) + δ)
δ ≥ 2A ≥ A

E(Q)
E(u).

This gives the lower bound with constant A
E(Q) .

Assume now that ‖u‖L∞ ≤ D∗. Then d(u) ≥ 0. As f(x) ∼ k2x as x → 0, let D > 0 be
such that |f | ≥ k2/2x on the interval [−D,D]. If ‖u‖L∞ ≤ D, then of course

F (u) ≥
∫
u2
rrdr +

k2

2‖g′‖2L∞

∫
g2(u)
r2

rdr ≥ min
(

1,
k2

2‖g′‖2L∞

)
E(u).

Otherwise, arguing as before, ‖u‖L∞ ∈ [D,D∗] and we see that F (u) ≥ 4
∫ D
0

√
d so that (as

E(u) < E(Q) + δ ≤ 2E(Q))

F (u) ≥
2
∫ D
0

√
d

E(Q)
E(u).

Choosing δ > 0 small enough and c = min(2(
∫ D
0

√
d)/E(Q), A/E(Q)k2/(2‖g′‖2L∞), 1) ends the

proof.

Let ϕ be such that ϕ(r) = 1 if r ≤ 1, ϕ(r) = 0 if r ≥ 2, and ϕ(r) ∈ [0, 1]. Denote
ϕR(x) = ϕ(r/R).

In the notation O, constants are absolute (do not depend on R or t or u).

Lemma 8. Let (u, ut) ∈ V(δ) be a solution to (1). One has

d

dt

∫
uturr

2ϕR(r)dr = −
∫
u2
t rdr +O(E∞R (u, ut)),

d

dt

∫
uutrϕR(r)dr =

∫ (
u2
t − u2

r −
uf(u)
r2

)
rdr +O(E∞R (u, ut)).

Remark 4. For the O, we can consider the rest of the energy E∞R or equivalently the tail in
H × L2

τ(R, u, ut) =
∫ ∞
R

(
u2
t + u2

r +
u2

r2

)
rdr.
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Proof. One computes

d

dt

∫
uturr

2ϕR(r)dr

=
∫
utturr

2ϕR(r)dr +
∫
uturtr

2ϕR(r)dr

=
∫ (

urr +
1
r
ur −

f(u)
r2

)
urr

2ϕR(r)dr − 1
2

∫
u2
t (2rϕR(r) + r2ϕ′R(r))dr

= −1
2

∫
u2
t (2rϕR(r) + r2ϕ′R(r))dr +

∫
u2
r(rϕR(r)− 1

2
(r2ϕR(r))′))dr +

1
2

∫
g2(u)ϕ′R(r)dr

= −
∫
u2
t rϕR(r)dr +

1
2

∫ (
u2
t − u2

r +
g2(u)
r2

)
r2ϕ′R(r)dr

Now, notice that∣∣∣∣−∫ u2
t r(1− ϕR(r))dr − 1

2

∫ (
u2
t − u2

r +
g2(u)
r2

)
r2ϕ′R(r)dr

∣∣∣∣
≤
∫
e(u, ut)(1− ϕR(r))rdr +

∫
e(u, ut)r2|ϕ′R(r)|dr

≤ E∞R (u, ut) +
1
R

∫
e(u)r2|ϕ′(r/R)|dr

≤ (1 + 2‖ϕ′‖L∞)E∞R (u, ut).

From this, we immediately deduce

d

dt

∫
uturr

2ϕR(r)dr = −
∫
u2
t rdr +O(E∞R (u, ut)).

In the same way,

d

dt

∫
uutrϕR(r)dr =

∫
u2
t rϕR(r)dr +

∫
uuttrϕR(r)dr

=
∫
u2
t rϕR(r)dr +

∫
u

(
urr +

1
r
ur −

f(u)
r2

)
rϕR(r)dr

=
∫ (

u2
t − u2

r −
uf(u)
r2

)
rϕR(r)dr +

1
2

∫
u2(rϕR(r))′′dr

− 1
2

∫
u2ϕ′R(r)dr.

Then similarly∣∣∣∣∫ (u2
t − u2

r −
uf(u)
r2

)
r(1− ϕR(r))dr +

1
2

∫
u2(rϕR(r))′′dr − 1

2

∫
u2ϕ′R(r)dr

∣∣∣∣
≤
∫ ∣∣∣∣u2

t − u2
r −

uf(u)
r2

∣∣∣∣ (1− ϕR(r))rdr +
1
2

∫
u2

r2
|r2ϕ′′R(r) + rϕ′R(r)|rdr

≤ C
∫
e(u, ut)(1− ϕR(r))rdr + C

∫
g2(u)
r2

∣∣∣∣ r2R2
ϕ′′(r/R)− r

R
ϕ′(r/R)

∣∣∣∣ rdr
≤ CE∞R (u, ut) + C(4‖ϕ′′‖L∞ + 2‖ϕ′‖L∞)E∞R (u, ut).

(The bounds on the third line come respectively from the pointwise bounds |uf(u)| ≤ Cg2(u)
and u2 ≤ Cg2(u), which hold according to the proof of Lemma 7).
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Theorem 3 (Rigidity property). Let (u0, u1) ∈ V(δ), and denote by u(t) the associated solu-
tion. Suppose that for all t ≥ 0, there exist λ(t) ≥ A0 > 0 such that

K =
{(

u

(
t,

r

λ(t)

)
,

1
λ(t)

ut

(
t,

r

λ(t)

))∣∣∣∣ (t, r) ∈ R+

}
is precompact in H × L2.

Then u ≡ 0.

Proof. Recall that u is global due to Proposition 1.
As K is precompact and λ(t) ≥ A0 > 0, for all ε > 0, there exists R(ε) such that

∀t ≥ 0, E∞R(ε)(u, ut) < ε.

This means that
lim
R→∞

sup
t≥0

E∞R (u, ut) = 0.

Due to Lemma 8 and 7, we have

d

dt

(∫
uturr

2ϕR(r)dr +
1
2

∫
uutϕR(r)dr

)
= −1

2

∫ (
u2
t + u2

r +
uf(u)
r2

)
rdr +O(E∞R (u, ut))

≤ − c
2
E(u, ut) +O(E∞R (u, ut)).

Fix R large enough so that supt≥0O(E∞R (u, ut)) ≤ cE(u,ut)
4 . Then by integration between τ = 0

and τ = t and conservation of energy :∫
uturr

2ϕR(r)dr +
1
2

∫
uutrϕR(r)dr ≤ − c

4
E(u, ut)t+ C0.

However, from �niteness of energy and u2 ≤ Cg2(u), we have for all t,∣∣∣∣∫ uturr
2ϕR(r)dr +

1
2

∫
uutrϕR(r)dr

∣∣∣∣
≤ 1

2

∫
(u2
t + u2

r)r
2ϕR(r)dr +

1
4

∫ (
u2
t + C

g2(u)
r2

)
r2ϕR(r)

≤ RE(u, ut) +
1

2C
RE(u, ut),

so that this quantity is bounded, hence t ≤ 4(R+R/(2C)+C0)/c. This is a contradiction with
the fact that u is global in time.

5 Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. The proof follows the general framework of Kenig and Merle [6, 5]. For a
detailed exposition of the various steps and lemmas, we refer to [6, Section 4].

Let δ ∈ (0, E(Q)] as in Lemma 7. All the wave maps considered below in the proof will
have initial data in V(δ) ; from Proposition 1, they are all de�ned globally in time. Hence we
are left to show that all wave maps u with initial data (u0, u1) ∈ V(δ) scatter at t → ±∞.
From Theorem 2, we only need to show that ‖u‖S(R) <∞.

We consider the critical energy

Ec = sup{E ∈ [0, E(Q) + δ]| ∀(u0, u1) ∈ V(δ), E(u0, u1) < E =⇒ ‖u(t)‖S(R) <∞}.
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Theorem 1 is the assertion
Ec = E(Q) + δ.

Assume this is not the case, namely Ec < E(Q) + δ, and we will reach a contradiction ; this
will complete the proof of Theorem 1. Due to Theorem 2, notice that

Ec ≥ δ0
def= δ0(E(Q) + δ) > 0. (17)

The compensated compactness procedure of Kenig and Merle in [5] provides us with a critical
element uc (in the case Ec < E(Q) + δ) :

Proposition 2. There exists (uc0, u
c
1) ∈ H × L2, satisfying (uc0, u

c
1) ∈ V(δ), E(uc0, u

c
1) = Ec

and if we denote uc(t) the associated solution to Problem (1), uc(t) is global and ‖uc‖S(R) =
‖uc‖S(R+) =∞.

Moreover, a critical element enjoys the following properties :

Proposition 3. Let uc be as in Proposition 2. Then there exist a continuous function λ :
R+ → R+

∗ such that the set

K =
{
v(t) ∈ H × L2

∣∣∣∣v(t, r) =
(
uc
(
t,

r

λ(t)

)
,

1
λ(t)

uct

(
t,

r

λ(t)

))}
has compact closure in H × L2.

Up to considering a di�erent critical element, we can furhermore assume that λ(t) ≥ A0

for all t ≥ 0, for some A0 > 0.

We thus consider uc given by Propositions 2 and 3. From Theorem 3, we deduce that
(uc, uct) = (0, 0), which is a contradiction with E(uc, uct) = Ec > 0 (in view of (17)). Hence
Ec = E(Q) + δ. This completes the proof of Theorem 1.

For the convenience of the reader, we sketch the proof of Proposition 2 and 3 ; a complete
proof can be derived (with minor modi�cations) from Proposition 4.1, 4.2 and Lemma 4.9 of
[6, Section 4].

We consider a sequence of (global in time) wave maps un and their initial data (u0n, u1n) ∈
V(δ) such that ‖W (t)(u0n, u1n)‖S(R) ≥ δ0, ‖un‖S(In) = ∞ and E(un, unt) → Ec (hence Ec ≤
E(un, unt) < E(Q) + δ).

Using the result by Bahouri and Gerard [1] on the operator W (t), we apply the (linear)
pro�le decomposition to the sequence (u0n, u1n)n≥1 :

Lemma 9 (Pro�le decomposition). Let (u0n, u1n)n be a bounded sequence of H × L2. Then
there exist sequences (V0,j , V1,j)j≥1 ∈ H × L2 and (λj,n, tj,n) ∈ R+

∗ ×R with

λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λj,n
→∞ as n→∞,

for j 6= j′ (orthogonal couple), such that the following holds. Denote Vj(t) = W (t)(V0,j , V1,j)
the linear pro�les, then for all J ≥ 1, there exist (w0

J
n, w1

J
n) ∈ H × L2 such that (up to a

subsequence of (un), which we still denote (un))

u0n(r) =
J∑
j=1

Vj

(
− tj,n
λj,n

,
r

λj,n

)
+ w0n(r)
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u1n(t) =
J∑
j=1

1
λj,n

Vjt

(
− tj,n
λj,n

,
r

λj,n

)
+ w1n(r)

with

lim
J→∞

lim sup
n→∞

‖W (t)(w0
J
n, w1

J
n)‖S(R) = 0,

∀J ≥ 1, E(u0n, u1n) =
J∑
j=1

E

(
Vj

(
− tj,n
λj,n

)
, Vjt

(
− tj,n
λj,n

))
+ E(w0

J
n, w1

J
n) + on→∞(1).

(Notice there is no shift in the space variable r as we are in a radial setting).
Then one can prove the following technical lemma. First recall the notion of non-linear pro-

�le : given data (V0, V1) ∈ H×L2 and a sequence (sn), with sn → s̄ ∈ R, it is the unique wave
map U de�ned on a neighbourhood of s̄ such that ‖(U(sn), Ut(sn))−W (sn)(V0, V1)‖H×L2 → 0
as n → ∞. U exists in virtue of Theorem 2, possibly doing a �xed point at in�nity. If
(V0, V1) ∈ V(δ), U is global in time due to Proposition 1.

Lemma 10. Let (u0n, u1n) ∈ H×L2 be such that E(u0n, u1n)→ Ec and ‖W (t)(u0n, u1n)‖S(R) ≥
δ0. Let (Vj)j≥1 and λj,n, tj,n be as in Lemma 9. Assume that one the following conditions holds
(denote sn = −t1,n/λ1,n) :

� lim infn→∞E(V1(sn), λ−1
1,nV1t(sn)) < Ec, or

� lim infn→∞E(V1(sn), λ−1
1,nV1t(sn)) = Ec and that after passing to a subsequence so that

sn → s̄ ∈ R and E(V1(sn), λ−1
1,nV1t(sn)) → Ec, if U1 is the non linear pro�le associated

to (V0,1, V1,1) and (sn), then U1 is global and ‖U1‖S(R) <∞.

Denote un the wave map with initial data (u0n, u1n). Then after passing to a subsequence, un
is global and ‖un‖S(R) <∞.

The proof of this lemma relies on the pro�le decomposition and a perturbation result which
is a by-product of Theorem 2. We refer to [6, Lemma 4.9] for further details.

From this, one can prove that the all pro�les (V0,j , V1,j) associated to (u0n, u1n)n are zero,
except for (exactly) one, say (V0,1, V1,1) and that E(V0,1, V1,1) = Ec. Then denote sn = − t1,n

λ1,n

and consider the non-linear pro�le associated to (V0,1, V1,1) and (sn) (up to a subsequence such
that sn has a limit in R). Then one can prove that U is global and ‖U‖S(R) = +∞ : U(t) or
U(−t) satis�es the conclusion of Proposition 2.

We now turn to Proposition 3 ; for the compactness result, we argue by contradiction.
Assume that there exists η0 > 0 and a sequence (tn)n≥1 such that for all λ > 0, n 6= n′,∥∥∥∥(U (tn, rλ) , 1

λ
Ut

(
tn,

r

λ

))
− (U(tn′ , r), Ut(tn′ , r))

∥∥∥∥
H×L2

≥ η0. (18)

Up to considering a subsequence, we can assume that tn has a limit in [0,∞] ; by continuity
of the �ow, tn → ∞. Now consider the pro�le decomposition of the sequence (U(tn), Ut(tn)).
Again using Lemma 10, one can prove that all pro�les are zero, except for one. Then one can
obtain for this pro�le a statement similar to (18), and from there, reach a contradiction. Hence
there exists λ : R+ → R+

∗ such that the set

K̃ =
{
v(t) ∈ H × L2

∣∣∣∣v(t, r) =
(
U

(
t,

r

λ(t)

)
,

1
λ(t)

Ut

(
t,

r

λ(t)

))}
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has compact closure in H × L2. It remains to prove that, up to changing the critical element
U , one can further assume λ(t) ≥ A0 > 0. Indeed, if it is not the case for U , by compactness,
there exist λn → 0 and tn → ∞ such that U(tn, r

λn
), Ut(tn, r

λn
) → (W0,W1) in H × L2. Then

one can prove that the wave map uc with initial data (W0,W1) satis�es all the properties of
Propositions 2 and 3.

Proof of Corollary 1. Notice that if (u0, u1) is such that E(u0, u1) ≤ E(Q) and (u0, u1) /∈ V(δ),
then (as u0(0) = 0), |u0(∞)| ≥ C∗, and from the pointwise inequality (5), |u0(∞)| = C∗,
u0(r) = εQ(λr) for some λ > 0 and ε ∈ {−1, 1}, and u1 = 0.

Hence in our case, (u0, u1) ∈ V(δ), and the result follows from Theorem 1.
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