Staircase Macdonald polynomials and the $q$-Discriminant - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Staircase Macdonald polynomials and the $q$-Discriminant

Résumé

We prove that a $q$-deformation $\Disc k\X q$ of the powers of the discriminant is equal, up to a normalization, to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of $\Disc k\X q$ on different basis of symmetric functions. In particular, we show that its expansion on the monomial basis can be explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne about the expansion of the $q$-discriminant on the Schur basis.
Fichier principal
Vignette du fichier
Staircase_Hall.pdf (205.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00204952 , version 1 (16-01-2008)
hal-00204952 , version 2 (19-08-2015)

Identifiants

Citer

Adrien Boussicault, Jean-Gabriel Luque. Staircase Macdonald polynomials and the $q$-Discriminant. 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008) , Jun 2008, Viña del Mar, Chile. pp.381-392. ⟨hal-00204952v1⟩
235 Consultations
719 Téléchargements

Altmetric

Partager

More