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Staircase Macdonald polynomials and the

q-Discriminant

Adrien Boussicault and Jean-Gabriel Luque∗

January 16, 2008

Abstract

We prove that a q-deformation Dk(X; q) of the powers of the discrim-
inant is equal, up to a normalization, to a specialization of a Macdonald
polynomial indexed by a staircase partition. We investigate the expan-
sion of Dk(X; q) on different basis of symmetric functions. In particular,
we show that its expansion on the monomial basis can be explicitly de-
scribed in terms of standard tableaux and we generalize a result of King-
Toumazet-Wybourne about the expansion of the q-discriminant on the
Schur basis.

1 Introduction

Let X = {x1, . . . , xn} be an alphabet. The q-discriminant

D1(X; q) :=
∏

i6=j

(qxi − xj),

is a polynomial encountered in different fields of mathematics. In particular,
its specialization at q = 1 is the discriminant which is an example of a sym-
metric function invariant under the transformation x → x + 1 and which has
been the subject of many works in invariant theory (by Cayley, Sylvester and
MacMahon).

In condensed matter physics, it plays a crucial role in the context of the frac-
tional quantum Hall effect. Laughlin [13] described it through a wavefunction
whose expression involves an even power of the Vandermonde determinant

Ψk
Laughlin(X) = ±D1(X; 1)

k
Ψ0

Laughlin(X).

In this paper, we give the links between the q-discriminant and the Macdon-
ald polynomials. More precisely, our main result is that the “polarized powers”
of the q-discriminant
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Dk(X; q) :=

k
∏

l=1

D1(X; q2l−1),

appear when one evaluates some specialization of “staircase” Macdonald poly-
nomials.

The powers of the discriminant (q = 1) are encountered also in the context
of generalizations of the Selberg integral [10, 12, 25]. These integrals are closely
related to the notion of Hankel hyperdeterminant [19, 20] and Jack polynomials
[8, 9]. The Selberg integral admits q-analogue involving the q-discriminant (see
e.g. [22] ex3 p374). It is interesting to remark that such integrals are related to
Macdonald polynomials [27].

More generally, the specializations taqb = 1 rise deeper identities related to
the generalization of the Izergin and Korepin determinant due to Gaudin [18].

The paper is organized as follow. In Section 2, we recall notations and prop-
erties related to symmetric functions. Section 3 is devoted to the main theorem
of the paper. We prove that the polynomial Dk(X; q) is a staircase Macdonald
polynomial for a specialization of the parameters q and t. As an application, in
Section 4, we give a formula for the coefficients arising in the expansion of an
even power of the Vandermonde determinant in terms of monomial functions.
Finally, in Section 5, we generalize a theorem of King et al. about the expansion
of the q-discriminant in terms of Schur functions.

2 Background and notations

2.1 Symmetric functions

We consider the C[[q, t, q−1, t−1]]-algebra Sym of symmetric functions over an
alphabet X, i.e. the functions which are invariant under permutations of com-
muting indeterminates called letters. There exists various families of such func-
tions. We shall need the generating series of complete function:

σz(X) :=
∑

i

Si(X)zi =
∏

x∈X

1

1 − xz
.

This notation is compatible with the sum X + Y and the product XY :=
∑

x∈X,y∈Y
xy in the following sense

σz(X + Y) = σz(X)σz(Y) =
∑

i

Si(X + Y)zi

(see e.g. [17] 1.3 p 5), and

σt(XY) =
∑

i

Si(XY)ti =
∏

x∈X

∏

y∈Y

1

1 − xyt
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(see e.g. [17] 1.5 p13). In particular, if X = Y one has σz(2X) = σz(X)2. This
definition can be extended for any complex number α by putting σz(αX) =
σz(X)α.

We will use the Schur basis whose elements Sλ are indexed by decreasing
partitions and defined by

Sλ := det
(

Sλi−i+j
)

1≤i,j≤n
,

see e.g. [22] I.3.4 p41 and [17] 1.4.2 p8.

2.2 Macdonald Polynomials

The Macdonald polynomials (Pλ(X; q, t))λ form the unique basis of symmetric
functions orthogonal for the standard q, t deformation of the usual scalar product
on symmetric functions (see e.g. [22] VI.4 p322), verifying

Pλ(X; q, t) = mλ(X) +
∑

µ≤λ

uλµmµ(X). (1)

where mλ is a monomial function in the notation of [22] I.2.1 p8. Their gener-
ating function is (see e.g. [22] VI.4.13 p324)

Kq,t(X, Y) := σ1

(

1 − t

1 − q
XY

)

=
∑

λ

Pλ(X; q, t)Qλ(Y; q, t),

where Qλ(X; q, t) = bλ(q, t)Pλ(Y; q, t) with

bλ(q, t) =
∏

(i,j)∈λ

1 − qλi−j+1tλ
′

j−i

1 − qλi−jtλ
′

j
−i+1

,

see e.g. [22] VI.6.19 p339.
Alternatively, when X = {x1, . . . , xn} is a finite alphabet, the Macdonald

polynomials can be defined as the eigenfunctions of the Sekiguchi-Debiard op-
erator M1 (see e.g [22] VI.3 p315 and VI.4 p325). Indeed,

Pλ(X; q, t)M1 = [[λ]]q,tPλ(X; q, t), (2)

where, for any v ∈ Nn, [[v]]q,t is defined as

[[v]]q,t := qv1tn−1 + qv2tn−2 + · · · + qvn . (3)

This operator may be defined in terms of divided differences

f(X)M1 = f(X − (1 − q)x1)R(tx1; X − x1)∂1 . . . ∂n−1. (4)

where, for each i = 1 . . . n− 1, ∂i, denoted on the right, is the operator (see e.g.
[15])

f(x1, . . . , xn)∂i :=
f(x1, . . . , xi, xi+1, . . . , xn) − f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.
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3 Staircase Macdonald polynomials

Let us denote by ρ := [n − 1, . . . , 1, 0] and set mρ := [m(n − 1), . . . , m, 0] for
m ∈ N. We need the following lemma.

Lemma 3.1 Under the specialization t → q
(1−2k)

2 , the Macdonald polynomial

P2kρ(X; q, q
(1−2k)

2 ) belongs to an eigenspace of M1 whose dimension is 1 and its
associated eigenvalue is

[[2kρ]]
q,q

1−2k
2

=

n
∑

i=1

q(2k+1)(n−1)/2. (5)

Proof From Equation (3), the eigenvalue associated to a partition λ is

[[λ]]
q,q

1−2k
2

=

n
∑

i=1

q(1−2k)(n−i)/2+λi .

Then, if [[λ]]
q,q

1−2k
2

= [[2kρ]]
q,q

1−2k
2

, it exists a permutation σ ∈ Sn such that,

for each 1 ≤ i ≤ n, one has 1
2 (2k+1)(n−σ(i)) = 1

2 (1−2k)(n− i)+λi. It follows
that

λi − λi+1 =
1

2
(2k + 1)(σ(i + 1) − σ(i)) −

1

2
(1 − 2k). (6)

Since λ is a partition, one has necessarily λi−λi+1 ≥ 0 and Equality (6) implies
σ(i + 1) − σ(i) ≥ 1−2k

1+2k > −1. This implies that σ is the identity and λ = 2kρ.
�

For simplicity, we set p := q−
1
2 and we will consider a finite alphabet

X = {x1, · · · , xn}. Our main result is that the polarized powers Dk(X, p) of the
discriminant are staircase Macdonald polynomials for the specialization consid-
ered here.

Theorem 3.2 One has

Dk(X; p) = (−p)
1
2k2n(n−1)P2kρ(X; q, p2k−1). (7)

Proof Reordering factors in Dk(qx1, x2, . . . , xn; p)R(p2k−1x1; X − x1), one ob-
tains

Dk(qx1, x2, . . . , xn; p)R(p2k−1x1; X−x1) = Dk(X; p)R(p−(2k+1)x1; X−x1).
(8)

Hence, applying Equation (8), the polynomial Dk(X; p)M1 can be rewritten as

Dk(X; p)M1 = Dk(X; p)R(p−2k−1x1; X − x1)∂1 · · · ∂n−1.

Since the polynomial Dk(X; p) is symmetric in X, it commutes with ∂1, . . . , ∂n−1

and then

Dk(X; p)R(p−2k−1x1; X−x1)∂1 · · ·∂n−1 = R(p−2k−1x1; X−x1)∂1 · · · ∂n−1Dk(X; p).
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The remaining factor R(p−2k−1x1; X−x1) is of total degree n−1 and there-
fore is sent to a constant under ∂1 . . . ∂n−1. We use the following lemma to
compute this constant.

Lemma 3.3 For any letters a, b,

R(ax1; bx2, · · · , bxn)∂1 · · · ∂n−1 =
∑

i+j=n−1

aibj. (9)

Proof Rewrite R(ax1; bx2, . . . , bxn) as

Sn−1(ax1 − b(X − x1)) = Sn−1((a + b)x1 − bX) =
∑

xi
1Si(a + b)Sn−1−i(−bX).

The image of this sum under ∂1 . . . ∂n−1 is Sn−1(a + b)S0(−X) as wanted. �

Applying Lemma 3.3, one obtains the value of k,

k =
n
∑

i=1

p(2k+1)(i−n) =
n
∑

i=1

p(2k−1)(n−i)−4k(n−i). (10)

From Equality (5), one recognizes that k = [|2kρ|]q,p2k−1 . This shows that

Dk(X; p) = βk,n(p)P2kρ(X; q, p2k−1), (11)

where βk,n(p) is a constant depending only on p, k and n. It remains to com-
pute the coefficient βk,n(p). Since we know that the dominant coefficient in
P2kρ(X; q, p2k−1) is 1 by definition, it suffices to compute the coefficient of the

monomial x
2k(n−1)
n · · ·x2k

2 in Dk(X, p). One finds

βk,n(p) = (−p)
1
2 k2n(n−1).

This ends the proof.�

Example 3.4 For k = 2 and n = 4, one obtains

P[12 840](x1 + x2 + x3 + x4; q, q
3/2) = q12

∏

i6=j

(

(qxi − xj)(q
3xi − xj)

)

4 Expansion of Macdonald polynomials in terms

of monomial functions

Macdonald gives in [22] VI.7.10 p345 the following expansion of the polynomials
Qλ in terms of monomial functions:

Qλ =
∑

µ

(

∑

T

φT (q, t)

)

mµ, (12)

5



where the inner sum is over the tableaux of shape λ and evaluation µ and each
φT (q, t) is an explicit rational function given in [22] VI.7.11 p346.

Theorem 3.2 and Equality (12) furnish an expansion of Dk(X; p) according
to the monomial basis,

Dk(X; p) =
(−p)

1
2 k2n(n−1)

b2kρ(q, p2k+1)

∑

λ

(

∑

T

φT (q, p2k−1)

)

mλ (13)

where the inner sum is over the tableaux of shape 2kρ and evaluation λ.

Recall that Jack polynomials [8, 9] P
(α)
λ (X) are obtained from Pλ(X; q, t)

setting q = tα and taking the limit when t tends to 1 (see [22] VI 10). One has

P
(α)
λ (X) = lim

t→1
Pλ(X; tα, t), (14)

and
Q

(α)
λ (X) = lim

t→1
Qλ(X; tα, t) = b

(α)
λ P

(α)
λ (15)

where b
(α)
λ := limt→1 bλ(tα, t). Putting

φ
(α)
T := lim

t→1
φT (tα, t),

one get from Equation (13) an expansion of integral powers of the discriminant.

Corollary 4.1 One has

D1(X; 1)k = Dk(X; 1) = (−1)
kn(n−1)

2 P
(αk)
2kρ (X)

= (−1)
kn(n−1)

2

(

b
(αk)
2kρ

)−1∑

λ

(

∑

T

φ
(αk)
T

)

mλ,
(16)

where αk = −2
2k−1 and the inner sum is over the tableaux of shape 2kρ and

evaluation λ.

Example 4.2 Consider an alphabet X = {x1, x2, x3} of size 3. One has,

Q42(X; q, t) =
2 2
1 1 1 1

m42 +
2 3
1 1 1 1

m411 +
2 2
1 1 1 2

m33

+

(

2 3
1 1 1 2

+
2 2
1 1 1 3

)

m321

+

(

3 3
1 1 2 2

+
2 3
1 1 2 3

+
2 2
1 1 3 3

)

m222.

Each tableau T is interpreted as the function ΦT ,

Q42(X; q, t) =

(

1 − t

1 − q

)

2
(

1 − tq

1 − q2

)

2
(

1 − t2q2

1 − tq3

) (

1 − t2q3

1 − tq4

)

m42

+

(

1 − t

1 − q

)

3
(

1 − tq

1 − q2

) (

1 − t2q3

1 − tq4

) (

1 − t2q2

1 − q3t

)

m411 + . . .

6



Setting q = t−2 and taking the limit t → 1, the algorithm described here
allows to compute the expansion of the Jack polynomials according to the mono-
mial functions. After simplification, one obtains

Q
(−2)
42 (X) =

1

280
m4,2 −

1

140
m4,1,1 −

1

140
m3,3 +

1

140
m3,2,1 −

3

140
m2,2,2.

And finally,

D1(X; 1) = −m4,2 + 2 m4,1,1 + 2 m3,3 − 2 m3,2,1 + 6 m2,2,2.

Corollary 4.1 can be applied to expand Hankel hyperdeterminants. Hyper-
determinants are polynomials defined by Cayley in the aim of generalizing the
notion of determinant to higher dimensional arrays1 [4, 5]. Given a mth order
tensor M = (Mi1...im

)1≤i1,...,im≤n on a n dimensional space, its hyperdetermi-
nant is

Det(M) =
1

n!

∑

σ1,...,σm∈Sn

sign(σ1 . . . σm)

m
∏

i=1

Mσ1(i)...σm(i).

Note that this polynomial vanishes when m is odd. Suppose that m = 2k is
an even integer. An Hankel hyperdeterminant is an hyperdeterminant whose
entries depend only on the sum of the indices Mi1...i2k

= f(i1 + · · · + i2k).
This kind of hyperdeterminant have been already considered by the authors in
collaboration with Thibon and Belbachir [19, 20, 2]. In particular, it is shown
that the coefficients Cλ(n, l) arising in the expression

Det (Mi1+···+i2k
) =

∑

λ

Cλ(n, k)

n
∏

i=1

f(λi),

are equal (up to a multiplicative term equal to the number of permutations
of λ divided by n!) to those arising in the expansion of Dk(X; 1) in terms of
monomial functions.

Example 4.3 From the expansion of the Jack polynomial P
(−2/3)
84 , for an al-

phabet of size 3,

P
(−2/3)
84 (x1 + x2 + x3) = m84 − 4m831 + 6m822 − 4m75 + 12m741 − 8m732 + 6m66 − 8m651

−22m642 + 48m633 + 48m552 − 36m543 + 90m44,

one deduces the expansion of the Hankel hyperdeterminant

1Note that Cayley proposed several generalizations of determinants. The polynomial con-
sidered here is the simplest one in the sense that it generalizes the expansion of determinant
as an alternated sum. Reader can refer to [19, 20, 21, 23, 26] for more informations on the
subject.
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Det (f(i1 + i2 + i3 + i4))0≤i1,i2,i3,i4≤3 = f(8)f(4)f(0)− 4f(8)f(3)f(1) + 3f(8)f(2)2

−4f(7)f(5)f(0) + 12f(7)f(4)f(1)− 8f(7)f(3)f(2)
+3f(6)2f(0) − 8f(6)f(5)f(1)− 22f(6)f(4)f(2)
+24f(6)f(3)2 + 24f(5)2f(2) − 36f(5)f(4)f(3)
+15f(4)3.

Furthermore, in [15] Lapointe et al. gave a determinantal expression of Jack
polynomial in terms of monomial functions. These computations leads naturally
to a determinantal expression for Hankel hyperdeterminants.

Note that the formula for the Macdonald polynomials H̃λ, given by Haglund,
Haiman and Loehr [7], provides an expansion of Dk(X; q) in terms of modified
monomial functions mλ(X(1 − t)) having a combinatorial interpretation.

5 Expansion of the polarized powers of the q-

discriminant in terms of Schur functions

Di Francesco et al. [6] considered the problem of the expansion of the discrimi-
nant in terms of Schur functions. They defined the n-admissible partitions to be
the partitions in the interval [(n − 1)n], [2(n − 1), . . . , 2, 0] (with respect to the
dominance order). They conjectured that they are exactly those occurring in
the expansion of the discriminant. This conjecture is false as shown by Scharf et
al. [24]. However, Kind et al. [11] proved that it becomes true when replacing
the discriminant by the q-discriminant.

In this section, we generalize this property to Dk(X; q). We define (n, m)-
admissible partitions to be the partitions which appear in the expansion

mρ(X)m−1Sρ(X) =
∑

λ

b
n,m
λ mλ(X) (17)

where X is an alphabet of size n. When m = 2k is even, the (n, 2k)-admissible
partitions are those of the interval [(k(n−1))n], [2k(n−1), . . . , 2k, 0]. We prove
that a partition appear in the expansion of Dk(X; q) in terms of Schur functions
if and only if it is a (n, 2k)-partition.

5.1 Computing admissible partitions

Let us denote by An,m the set defined recursively by

An,1 := {λ = [λ1, . . . , λn]|ρ ≥ λ}
An,m := {((λ1 + σ(1) − 1, . . . , λn + σ(n) − 1))|σ ∈ Sn and λ ∈ An,m−1}.

(18)

Lemma 5.1 Let λ be a partition. The following assertions are equivalent.

1. The partition λ belongs to An,m.
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2. The partition λ is (n, m)-admissible.

3. λ is partition of length n less or equal to mρ with respect to the dominance
order.

Proof The equivalence between the assertions 1 and 2 is straightforward from
Equations (17) and (18). Furthermore, from Equation (18), the maximal parti-
tion of An,m is mρ. It remains to prove 3 ⇒ 1. We proceed by induction on m,
if m = 1 then the result is trivial. Suppose that m > 1. Let λ be a partition of
size n less or equal to mρ with respect to the dominance order. Then ((λ − ρ))
is a partition less or equal to (m−1)ρ. Indeed, putting ((λ−ρ)) = (µ1, . . . , µn),
for a permutation σ ∈ Sn, one has µi = λσ(i) + n − σ(i). Hence, for each i

µ1 + · · · + µi ≤ λσ(1) + · · · + λσ(i) + n − σ(1) + · · · + n − σ(i)
≤ λ1 + · · · + λi + n − 1 + · · · + n − i

≤ (m − 1)(n − 1
2 i(i + 1))

implies ((λ − ρ)) ≤ (m − 1)ρ for the dominance order.
By induction, ((λ − ρ)) belongs to An,m−1. Furthermore, it exists a permu-

tation σ such that ((λ − ρ)) + ρσ = λ. Hence, from Equation (18), λ ∈ An,m.�

5.2 Counting admissible partitions

One considers the free commutative monoid T generated by the symbols T =
{τ1, . . . , τn−1} acting on the vectors of size n by

τi[v1, . . . , vn] = [v1, . . . , vi−1, vi − 1, vi+1 + 1, vi+1, . . . , vn].

For a given vector v ∈ Zn, T.v is the set of the vectors w = [w1, . . . , wn] ∈ Zn

of same weight (i.e. v1 + · · · + vn = w1 + . . . wn) lower or equal to v for the
dominance order. In particular, if v = λ is a partition then T.λ contains all the
partition of size n lower or equal to λ. To each vector v ∈ Zn, one associates
the monomial zv = zv1−v2

1 . . . z
vn−1−vn

n−1 . For a given weight, the monomial zv

characterizes completely v, furthermore v is a (decreasing) partition if and only
if its weight is non negative and the degree of the monomial zv in each variable
zi is non-negative.

Example 5.2

z3
1

[4,1,1]

τ1 ւ ց τ2

z1z2

[3,2,1]
z4
1,z−2

2

[4,0,2]

ւ ցւ ց
z−1
1 z2

2

[2,3,1]
z2
1z−1

2

[3,1,2]
z4
1z−3

2

[3,−1,2]

ւ ցւ ցւ ց
z−3
1 z3

2

[1,4,1]
1

[2,2,2]
z3
1z−3

2

[3,0,3]
x−5
1 z5

2

[3,−2,3]

. . .

(19)
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Acting on v by τi is equivalent to multiply zv by

ti =











zi−1zi+1

z2
i

if 1 < i < n − 1
z2

z2
1

if i = 1
zn−2

z2
n−1

if i = n − 1.

Since there is no algebraic relations between the t′is, each vector appears in T.v

with multiplicity 0 or 1. In other words, one has

σq(T ).zv =
∏

i

1

1 − tq
.zv =

∑

w≤v

qαv,wzw. (20)

where αv,w is the degree of the monomial acting on v to obtain w. Extracting
the monomial which encodes a partition is equivalent to extract the part of
the series (20) constituted only with non-negative exponents. This operation is
performed by the MacMahon Omega operator (see e.g [1])

Ωx1,...,xp

∑

n1,...,np∈Z

αn1,...,np
xn1

1 . . . . .xnp

p =
∑

n1,...,np∈N

αn1,...,np
xn1

1 . . . . .xnp

p .

Example 5.3 One has

Ωz1,z2

z3
1

(1 − z1

z2
2
q)(1 − z2

z2
1
q)

= z3
1 + qz1z2 + q3

which implies that the set of the partitions of size 3 lower or equal to [411] is
{[411], [321], [222]}.

Hence,

Proposition 5.4 The size n ≥ 2 of the alphabet being fixed, the generating
series of the (n, k)-admissible partitions is the rational function

An(q, t; z1, . . . , zn−1) = Ωz1,...,zn−1

(

(1 − tz1 . . . zn−1)(1 −
z0z2

z2
1

q)(1 −
z1z3

z2
2

q) . . . (1 −
zn−2zn

z2
n−1

q)

)−1

,

where z0 = zn = 1.

Example 5.5 Let us give the first value of An(q, t; z1, . . . , zn−1).

1. First, one considers the special case n = 2,

A1(q, t; z1) = Ωz1

(

(1 − tz1)(1 − q
z2
1
)
)−1

=
(

(1 − qt2) (1 − z1 t)
)−1

= 1 + z1t + (q + z2
1)t

2 + (qz1 + z3
1)t

3 + (q2 + qz2
1 + z4

1)t4 + . . . .

This means that, for k = 1 the only admissible partition is [21], for k = 2,
there is two admissibles partitions [42] and [33], for k = 3 the admissibles
partitions are [63] and [54] etc...

10



2. If n = 3, A3(q, t; z1, z2) = − 1−z1
3
z2

3q2t4

(1−tz1 z2 )(1−qz2 3t2)(1−z1
3qt2)(1−q2t) .

3. If n = 4, A4(1, t; 1, 1) = t4+5 t3+7 t2+2 t+1
(1+t)2(1−t)4

.

4. If n = 5, A5(1, t; 1, 1) = 3 t6+21 t5+61 t4+68 t3+39 t2+7 t+1
(1−t)5(t+1)3

5.3 Characterization of the partitions arising in the ex-

pansion of Dk(X; q)

In this paragraph, one extends the result of King-Toumazet-Wybourne to the
polynomials Dk(X; q).

Theorem 5.6 Expand Dk(X; q) in terms of Schur functions,

Dk(X; q) =
∑

λ

cλ(q)Sλ(X).

Then, cλ(q) 6= 0 if and only if λ is a (n, 2k)-admissible partition.

Proof Let us prove first the only if part. From Theorem 3.2, the polynomial
Dk(X; q) equals (up to a multiplicative coefficient) a specialization of the Mac-
donald P2kρ(X; q, t). But it is well known that the partitions arising in the
expansion of P2kρ(X; q, t) in terms of Schur functions belong to the interval
[(k(n − 1))n], 2kρ (see e.g. the determinantal expression of Macdonald polyno-
mials given in [15]). From Lemma 5.1, this is equivalent to the fact that λ is
(n, 2k)-admissible.

Conversely, to prove that the admissibility of λ implies the non nullity of
cλ(q), it suffices to prove it for a specialization. We will set q = −1. In this
case,

Dk(X; q) =
∏

i6=j

(xi + xj)
k = Sρ(X)2k.

We will prove a stronger result showing that the coefficient c
n,m
λ in the

expansion

Sρ(X)m =
∑

λ

c
n,m
λ Sλ(X)

is non-zero if and only if λ is (n, m)-admissible. We proceed by induction on
m. Note that the initial case (m = 2) have been proved by King-Toumazet-
Wybourne in [11] Corollary 3.2 as a consequence of an important result of
Bereinstein-Zelevinsky [3].

One needs the two following lemmas

Lemma 5.7 If λ is a (n, m)-admissible partition (m > 1), then ((λ − ρ)) is a
(n, m − 1)-admissible partition.

Proof From Equality (17), each (n, m)-admissible partition can be obtained by
adding a permutation of ρ to a (n, m−1)-admissible partition. This is equivalent
to our statement. �
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Lemma 5.8 Let µ ⊂ λ be a partition and ν := ((λ1−µ1, . . . , λn−1−µn−1, λn−
µn)). Then, the Littlewood-Richardson coefficient cλ

µν = 〈Sλ, SµSν〉 equals 1.

Proof The Littlewood-Richardson coefficient cλ
µν is equal to the number of

tableaux of shape ν and evaluation λ − µ. But λ − µ is a permutation if ν and
Theorem 11.4.3 of [17] implies that such a tableau exists and is unique. This
ends the proof. �

End of the proof of Theorem 5.6 Let λ be a (n, m)-admissible partition.
Since ρ ⊂ λ, Lemma 5.7 implies that the partition µ = ((λ − ρ)) is (n, m − 1)-
admissible. And by induction, Sµ appears with a non-zero coefficient in Sm−1

ρ .
The positivity of the Littlewood Richardson coefficients implies that each par-
tition ν such that cν

µ,ρ 6= 0 appears with a non-zero coefficient in the expansion
of Sm

ρ . In particular, from Lemma 5.8, it is the case of λ. This shows that
c
n,m
λ 6= 0 if and only if λ is (n, m)-admissible and proves the Theorem.�.

Note that other expansion of Macdonald functions can be found in literature
(for example Hall-Littlewood polynomials can be expanded in terms of plane
partitions [16]), it should be interesting to investigate the properties Dk(X; q)
which can be deduced from these expansions.
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