Sparse Regression Using Mixed Norms - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Sparse Regression Using Mixed Norms

Résumé

Mixed norms are used to introduce in an easy way, both structures and sparsity in the framework of sparse regression problems, and then introduce implicitly couplings between regression coefficients. Corresponding algorithms are described and analyzed. Besides the classical sparse regression problem, at the same time the multi-layered expansion of signals are considered, using union of dictionaries. These sparse structured expansions are done subject to equality constraint, using a modified FOCUSS algorithm. When the mixed norms are used in the framework of regularized inverse problem, a thresholded Landweber iteration is used to minimize the corresponding variational problem.
Fichier principal
Vignette du fichier
Lpq.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00202904 , version 1 (09-01-2008)
hal-00202904 , version 2 (16-01-2008)
hal-00202904 , version 3 (31-05-2008)
hal-00202904 , version 4 (02-06-2009)

Identifiants

  • HAL Id : hal-00202904 , version 2

Citer

Matthieu Kowalski. Sparse Regression Using Mixed Norms. 2008. ⟨hal-00202904v2⟩
579 Consultations
4040 Téléchargements

Partager

More