Morphological Diversity and Sparse Image Denoising - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Morphological Diversity and Sparse Image Denoising

Résumé

Overcomplete representations are attracting interest in image processing theory, particularly due to their potential to generate sparse representations of data based on their morphological diversity. We here consider a scenario of image denoising using an overcomplete dictionary of sparse linear transforms. Rather than using the basic approach where the denoised image is obtained by simple averaging of denoised estimates provided by each sparse transform, we here develop an elegant bayesian framework to optimally combine the individual estimates. Our derivation of the optimally combined denoiser relies on a scale mixture of gaussian (SMG) prior on the coefficients in each representation transform. Exploiting this prior, we design a bayesian 2-risk (mean field) nonlinear estimator and we derive a closed-form for its expression when the SMG specializes to the Bessel K form prior. Experimental results are carried out to show the striking profits gained from exploiting sparsity of data and their morphological diversity.
Fichier principal
Vignette du fichier
ICASSP-2007-Boubchir.pdf (797.28 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00196739 , version 1 (04-11-2014)

Identifiants

Citer

Jalal M. Fadili, Jean-Luc Starck, Larbi Boubchir. Morphological Diversity and Sparse Image Denoising. IEEE ICASSP, Apr 2007, Honolulu, United States. pp.589-592, ⟨10.1109/ICASSP.2007.365976⟩. ⟨hal-00196739⟩
216 Consultations
163 Téléchargements

Altmetric

Partager

More