Failure of Wiener's property for positive definite periodic functions
Résumé
We say that Wiener's property holds for the exponent $p>0$ if we have that whenever a positive definite function $f$ belongs to $L^p(-\varepsilon,\varepsilon)$ for some $\varepsilon>0$, then $f$ necessarily belongs to $L^p(\TT)$, too. This holds true for $p\in 2\NN$ by a classical result of Wiener. Recently various concentration results were proved for idempotents and positive definite functions on measurable sets on the torus. These new results enable us to prove a sharp version of the failure of Wiener's property for $p\notin 2\NN$. Thus we obtain strong extensions of results of Wainger and Shapiro, who proved the negative answer to Wiener's problem for $p\notin 2\NN$.
Domaines
Analyse classique [math.CA]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...