Failure of Wiener's property for positive definite periodic functions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Failure of Wiener's property for positive definite periodic functions

Résumé

We say that Wiener's property holds for the exponent $p>0$ if we have that whenever a positive definite function $f$ belongs to $L^p(-\varepsilon,\varepsilon)$ for some $\varepsilon>0$, then $f$ necessarily belongs to $L^p(\TT)$, too. This holds true for $p\in 2\NN$ by a classical result of Wiener. Recently various concentration results were proved for idempotents and positive definite functions on measurable sets on the torus. These new results enable us to prove a sharp version of the failure of Wiener's property for $p\notin 2\NN$. Thus we obtain strong extensions of results of Wainger and Shapiro, who proved the negative answer to Wiener's problem for $p\notin 2\NN$.

Mots clés

Fichier principal
Vignette du fichier
bonami_revesz_note-arxiv.pdf (173.93 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00184970 , version 1 (04-11-2007)

Identifiants

Citer

Aline Bonami, Szilárd Gy. Révész. Failure of Wiener's property for positive definite periodic functions. 2007. ⟨hal-00184970⟩
96 Consultations
135 Téléchargements

Altmetric

Partager

More