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FAILURE OF WIENER’S PROPERTY FOR POSITIVE DEFINITE

PERIODIC FUNCTIONS

ALINE BONAMI AND SZILÁRD GY. RÉVÉSZ

Abstract. We say that Wiener’s property holds for the exponent p > 0 if we
have that whenever a positive definite function f belongs to Lp(−ε, ε) for some
ε > 0, then f necessarily belongs to Lp(T), too. This holds true for p ∈ 2N by
a classical result of Wiener.

Recently various concentration results were proved for idempotents and
positive definite functions on measurable sets on the torus. These new results
enable us to prove a sharp version of the failure of Wiener’s property for
p /∈ 2N. Thus we obtain strong extensions of results of Wainger and Shapiro,
who proved the negative answer to Wiener’s problem for p /∈ 2N.

Contre-exemples à la propriété de Wiener pour les fonctions périodi–
ques définies-positives.
Résumé. On dit que l’exposant p possède la propriété de Wiener si toute
fonction périodique définie-positive qui est de puissance p-ième intégrable au
voisinage de 0 l’est sur un intervalle de période. C’est le cas des entiers pairs,
d’après un résultat classique de Wiener.

Nous avons récemment obtenu des phénomènes de concentration des polynômes
idempotents ou définis-positifs sur un ensemble mesurable du tore qui nous per-
mettent de donner une version forte du fait que les exposants p /∈ 2N n’ont pas
la propriété de Wiener, améliorant ainsi les résultats de Wainger et Shapiro.

1. Introduction

Let f be a periodic integrable function which is positive definite, that is, has non
negative Fourier coefficients. Assume that it is bounded (in ‖·‖∞) in a neighborhood
of 0, then it necessarily belongs to L∞(T), too. In fact, its maximum is obtained

at 0 and, as f(0) =
∑

k f̂(k), f has an absolutely convergent Fourier series.
The same question can be formulated in any Lp space. Actually, the following

question was posed by Wiener in a lecture, after he proved the L2 case. We refer
to [16] for the story of this conjecture, see also [12], [16] and [18].

Problem 1 (Wiener). Let 1 ≤ p <∞. Is it true, that if for some ε > 0 a positive
definite function f ∈ Lp(−ε, ε), then we necessarily have f ∈ Lp(T), too?

The observation that the answer is positive if p ∈ 2N has been given by Wainger
[17], as well as by Erdős and Fuchs [9]. We refer to Shapiro [16] for the proof, since
the constant given by his proof is in some sense optimal, see [12, 13]. Generalizations
in higher dimension may be found in [11] for instance. It was shown by Shapiro
[16] and Wainger [17] that the answer is to the negative for all other values of p.
Negative results were obtained for groups in e.g. [10] and [12].

There is even more evidence that the Wiener property must hold when p = 2 and
we prescribe large gaps in the Fourier series of f . Indeed, in this case by well-known
results of Wiener and Ingham, see e.g. [18, 20], we necessarily have an essentially
uniform distribution of the L2 norm on intervals longer than the reciprocal of the
gap, even without the assumption that f be positive definite. As Zygmund pointed
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out, see the Notes to Chapter V §9, page 380 in [20], Ingham type theorems were
not known for p 6= 2, nevertheless, one would feel that prescribing large gaps in
the Fourier series should lead to better control of the global behavior by means of
having control on some subset like e.g. (−ε, ε). So the analogous Wiener question
can be posed restricting to positive definite functions having gaps tending to ∞.
However, we answer negatively as well. In this strong form the question, to the
best of our knowledge, has not been dealt with yet. Also we are able to replace the
interval (−ε,+ε) by any measurable symmetric subset E of the torus of measure
|E| < 1. Neither extension can be obtained by a straightforward use of the methods
of Shapiro and Wainger.

2. L2 results and concentration of integrals

We use the notation T := R/Z for the torus. Then e(t) := e2πit is the usual
exponential function adjusted to interval length 1, and we denote eh the function
e(hx). The set of positive definite trigonometrical polynomials is the set

(1) T + :=

{
∑

h∈H

akek : H ⊂ Z (or N), #H <∞, ak ≥ 0 (k ∈ H)

}

For obvious reasons of being convolution idempotents, the set

(2) P :=

{
∑

h∈H

eh : H ⊂ Z (or N), #H <∞
}

is called the set of (convolution-)idempotent exponential (or trigonometric) polyno-
mials, or just idempotents for short.

Note that multiplying a polynomial by an exponential eK does not change its
absolute value, and the property of belonging to P or T + is not changed either.
Therefore, it suffices to consider polynomials with nonnegative spectrum, i.e. H ⊂
N in (1) and (2).

Also note that for a positive definite function the function |f | is necessarily even.
This is why we consider 0-symmetric (or, just symmetric for short) intervals or sets,
(alternatively, we could have chosen to restrict to [0, 1/2) instead of T).

Let us first state the theorem on positive definite functions in L2. Recall that
the direct part is attributed to Wiener, with the constant given by Shapiro in [16].
The converse seems to be well known (see [12, 13]), except, may be, for the fact
that counter-examples may be given by idempotents. The fact that the Wiener
property fails for arbitrary measurable sets is, to the best of our knowledge, new.

Theorem 2 (Wiener, Shapiro). For p an even integer, for 0 < a < 1/2 and for
f ∈ T +, we have the inequality

(3)
1

2a

∫ +a

−a

|f |p ≥ 1

2

∫ +1/2

−1/2

|f |p.

Moreover, the constant 1/2 cannot be replaced by a smaller one, even when restrict-
ing to idempotents. Indeed, for each integer k > 2, for a < 1/k and for b > 1/k,

there exits an idempotent f and such that
∫ +a

−a
|f |p ≤ b×

∫ +1/2

−1/2
|f |p.

Proof. We refer to Shapiro for the proof of the inequality (3).
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To show sharpness of the constant, let us now give an example, inspired by the
examples of [7]. We take f := Dn ∗ µk, where Dn is the Dirichlet kernel, defined
here as

(4) Dn(x) :=

n−1∑

ν=0

e(νx) = eπi(n−1)x/2 sin(πnx)

sin(πx)
,

and µk is the mean of Dirac masses at each k-th root of unity. Both have Fourier
coefficients 0 or 1, so that f is an idempotent. Only one of the point masses of µk

lies inside the interval (−a,+a) and one can see that the ratio between
∫ +a

−a |f |p

and
∫ +1/2

−1/2 |f |p tends to 1/k when n tends to infinity. �

Remark 3. The interval (−a,+a) cannot be replaced by a measurable set E having
0 as a density point, even if |E| is arbitrarily close to 1. Indeed, assume that the
complement of E is the union (modulo 1) of all intervals of radius 1/l3 around all
irreducible rational numbers k/l, with k different from 0 and l > L. Then E has the
required properties, while, for the same idempotent f := Dn ∗ µl, the ratio between∫

E
|f |p and

∫ +1/2

−1/2
|f |p tends to 1/l when n tends to infinity. We get our conclusion

noting that l may be arbitrarily large.

Let us now consider the p-concentration problem, which comes from the following
definition.

Definition 4. Let p > 0, and F be a class of functions on T. We say that for
the class F there is p-concentration if there exists a constant c > 0 so that for any
symmetric measurable set E of positive measure one can find an idempotent f ∈ F
with

(5)

∫

E

|f |p ≥ c

∫

T

|f |p.

The problem of p-concentration on the torus for idempotent polynomials has
been considered in [7], [8], [2]. It was essentially solved recently in [6]. Also, the
weaker question of concentration of pth integrals of positive definite functions has
been dealt with starting with the works [7, 8]. In this respect we have proved the
following result, see [6, Theorem 48]. We will only state that part of the theorems
of [6] that we will use.

Theorem 5. For all 0 < p < ∞, p not an even integer, whenever a 0-symmetric
measurable set E of positive measure |E| > 0 is given, then to all ε > 0 there exists
some positive definite trigonometric polynomial f ∈ T + so that

(6)

∫

cE

|f |p ≤ ε

∫

T

|f |p.

Moreover, f can be taken with arbitrarily large prescribed gaps between frequencies
of its Fourier series.

Remark 6. The same result is also proved for open symmetric sets and idempo-
tents, and for measurable sets and idempotents when p > 1.

Theorem 5 allows to see immediately that there is no inequality like (3) for p not
an even integer. What is new, compared to the results of Shapiro and Wainger, is
the fact that this is also the case if f has arbitrarily large gaps, and that we can
replace intervals (−a,+a) by arbitrary measurable sets of measure less than 1. We
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will give a different statement in the next section for E an open set, and also show
a strong version of the negative state of Wiener’s problem.

3. Negative results in Wiener’s problem

Let us start with somewhat strengthening the previous theorem for open sets,
which we obtain by an improvement of the methods of Shapiro in [16].

Theorem 7. For all 0 < q ≤ p < 2, whenever a 0-symmetric open set E of
positive measure |E| > 0 is given, then for all ε > 0 there exists some positive
definite trigonometric polynomial f ∈ T + so that

(7)

∫

cE

|f |p ≤ ε

(∫

T

|f |q
)p/q

.

The same is valid for q < p with p not an even integer, provided that q is sufficiently
close to p, that is q > q(p), where q(p) < p.

The construction is closely related to the failure of Hardy Littlewood majorant
property. We do not know whether, for p > 2 not an even integer, that is 2k < p <
2k + 2, we can take q(p) = 2k. Due to Theorem 2, we cannot take q(p) < 2k. We
do not know either whether the next statement is valid for functions with arbitrary
large gaps.

Proof. Let us first assume that p < 2. Then, for Dn the Dirichlet kernel with n
sufficiently large depending on ε, there exists a choice of ηk = ±1 such that

‖Dn‖p ≤ ε‖
n∑

k=0

ηkek‖q.

Indeed, if it was not the case, taking the q-th power, integrating on all possible signs

and using Khintchine’s Inequality, we would find that cε
√
n ≤ ‖Dn‖p ≤ Cn1− 1

p

(p > 1), cε
√
n ≤ ‖Dn‖1 ≤ C logn and cε

√
n ≤ ‖Dn‖p ≤ C (0 < p < 1) which leads

to a contradiction.
We assume that E contains I ∪ (−I), where I := ( k

N ,
k+1
N ), and denote

g(t) :=

n∑

k=0

ηkek(t) G(t) := Dn(t).

Let ∆ be a triangular function based on the interval (− 1
2N ,+

1
2N ), that is, ∆(t) :=

(1 − 2N |t|)+. We finally consider the function

f(t) := ∆(t− a)g(2Nt) + ∆(t+ a)g(2Nt) + 2∆(t)G(2Nt),

where a is the center of the interval I. Then an elementary computation of Fourier
coefficients, using the fact that ∆ has positive Fourier coefficients while the modulus
of those of g and G are equal, allows to see that f is positive definite. Let us prove
that one has (7). The left hand side is bounded by 2

N ‖G‖p
p, while

∫
T
|f |q is bounded

below by 1
2N ‖g‖q

q − 2
N ‖G‖q

q. We conclude the proof choosing n,N sufficiently large.

Let us now consider p > 2 not an even integer. Mockenhaupt and Schlag in
[15] have given counter-examples to the Hardy Littlewood majorant conjecture,
which are based on the following property: for j > p/2 an odd integer, the two
trigonometric polynomials

g0 := (1 + ej)(1 − ej+1) G0 := (1 + ej)(1 + ej+1)
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satisfy the inequality ‖G0‖p < ‖g0‖p. By continuity, this inequality remains valid
when p is replaced by q in the right hand side, with q > q(p), for some q(p) < p. By
a standard Riesz product argument, for K large enough, as well as N1, N2, · · ·NK ,
depending on ε, the functions

g(t) := g0(t)g0(N1t) · · · g0(NKt) and G(t) := G0(t)G10(N1t) · · ·G0(NKt)

satisfy the inequality

‖G‖p ≤ ε‖g‖q.

From this point the proof is identical. �

We can now state in two theorems the counter-examples that we obtain for the
Wiener conjecture when p is not an even integer.

Theorem 8. Let 0 < p < ∞, and p /∈ 2N. Then for any symmetric, measurable
set E ⊂ T with |E| > 0 and any q < p, there exists a function f in the Hardy space
Hq(T) with positive Fourier coefficients, so that its pointwise boundary value f∗ is
in Lp(cE) while f∗ /∈ Lp(T). Moreover, f can be chosen with gaps tending to ∞ in
its Fourier series.

Here Hq(T) denotes the space of periodic distributions f whose negative coeffi-
cients are zero, and such that the function fr are uniformly in Lq(T) for 0 < r < 1,
where

fr(t) :=
∑

n

f̂(n)r|n|e2iπnt.

Moreover, the norm (or quasi-norm) of f is given by

‖f‖q
Hq(T) := sup

0<r<1

∫ 1

0

|fr|q.

It is well known that, for f ∈ Hq(T), the functions fr have an a. e. limit f∗

for r tending to 1. The function f∗, which we call the pointwise boundary value,
belongs to Lq(T). When q ≥ 1, then f is the distribution defined by f∗, and Hq(T)
coincides with the subspace of functions in Lq(T) whose negative coefficients are
zero. In all cases the space Hq(T) identifies with the classical Hardy space when

identifying the distribution f with the holomorphic function
∑

n≥0 f̂(n)zn on the
unit disc. This explains the use of the term of boundary value.

The function f ∈ Hq is said to have gaps (in its Fourier series) tending to ∞
whenever its Fourier series of f can be written as

∑∞
k=0 ake

2iπnkx, where nk is an
increasing sequence such that nk+1 − nk → ∞ with k.

In opposite to this theorem, recall that for nk a lacunary series, if the Fourier
series is in Lp(E) for some measurable set E of positive measure, then the function
f belongs to all spaces Lq(T), see [20]. This has been generalized by Miheev [14]
to Λ(p) sets for p > 2: if f is in Lp(E), then f is in the space Lp(T). See also the
expository paper [5].

Proof. The key of the proof is Theorem 5. Remark that we can assume that p >
q > 1. Indeed, f ℓ is a positive definite function when f is, and counter-examples
for some p > 1 will lead to counter-examples for p/ℓ. Now, let us take a sequence
Ek of disjoint measurable subsets of E of positive measure, such that |Ek| < 2−αk,
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with α to be given later and let fk be a sequence of positive definite trigonometric
polynomials such that

(8)

∫

T\Ek

|fk|p ≤ 2−kp

∫

T

|fk|p.

Moreover, we assume that fk’s have gaps larger than k. Using Hölder’s inequality,
we obtain

∫

T

|fk|q ≤ 2−α(1−q/p)k

(∫

Ek

|fk|p
)q/p

+

(∫

T\Ek

|fk|p
)q/p

≤ 2 × 2−kq

(∫

T

|fk|p
)q/p

,

if α is chosen large enough. Finally, we normalize the sequence fk so that
∫

T
|fk|p =

2
k
2 , and take

(9) f(x) :=
∑

k≥1

e2iπmkxfk(x),

where the mk are chosen inductively sufficiently increasing, so that the condition
on gaps is satisfied. The series is convergent in Lq(T) and in Lp(cE), and the limit
f has its Fourier series given by (9). Now, let us prove that f is not in Lp(T). Since
the Ej ’s are disjoint,

‖f‖p ≥ ‖f‖Lp(Ek) ≥ ‖fk‖p −
∑

j

‖fj‖Lp(cEj) ≥ 2
k
2 −

∑

j>0

2−
j

2 ,

which allows to conclude. �

Using Theorem 7 instead of Theorem 5, we have the following.

Theorem 9. (i) Let p > 2, with p /∈ 2N, and let ℓ ∈ N such that 2ℓ <
p < 2(ℓ + 1). Then, for any symmetric open set U ⊂ T with |U | > 0
and q > q(p), there exists a positive definite function f ∈ L2ℓ(T), whose
negative coefficients are zero, such that f /∈ Lq(T) while f is in Lp(cU).

(ii) Let 0 < p < 2. Then for any symmetric open set U ⊂ T with |U | > 0 and
any s < q < p, there exists a function f in the Hardy space Hs(T) with non
negative Fourier coefficients, so that f /∈ Hq(T) while f∗ is in Lp(cU).

Proof. Let us first prove (i). We can assume that cU contains a neighborhood
of 0. So, by Wiener’s property, if f is integrable and belongs to Lp(cU), then
f is in L2ℓ(T). Let us prove that there exists such a function, whose Fourier
coefficients satisfy the required properties, and which does not belong to Lq(T).
The proof follows the same lines as in the previous one. By using Theorem 7,
we can find positive definite polynomials fk such that ‖fk‖q = 2k/2 → ∞, while
‖fk‖Lp(cUk) ≤ 2−k with Uk ⊂ U disjoint and of sufficiently small measure, so that∑

‖fk‖Lp(cU) <∞. As before, the function f :=
∑

k≥1 emk
fk will have the required

properties.
Let us now consider 1 ≤ p < 2, from which we conclude for (ii): if p < 1, we

look for a function of the form f ℓ, with f satisfying the conclusions for ℓp, with ℓ
such that 1 ≤ ℓp < 2. We can assume that q < 1. We proceed as before, with fk’s
given by Theorem 7, such that ‖fk‖q = 2k/2 and ‖fk‖Lp(cUk) ≤ 2−k/2. The Uk’s are
assumed to be disjoint and of small measure, so that

∑
k ‖fk‖s

Hs < ∞. It follows
that f ∈ Hs(T). Remark that f is not a function, in general, but a distribution.
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Recall that f∗ is the boundary value of the corresponding holomorphic function.
We write as before

‖f‖q
Hq(T) ≥ ‖f∗‖q

Lq(Uk) ≥ ‖fk‖q
q −

∑

j

‖fj‖q
Lq(cUj)

≥ 2
kq

2 −
∑

j>0

2−
jq

2 ,

which allows to conclude for the fact that f is not in Hq(T).

Remark 10. As Wainger in [18], we can prove a little more: the function f may
be chosen such that supr<1 |fr| is in Lp(cU). Let us give the proof in the case (i).
We can assume that U may be written as I ∪ (−I) for some interval I. Let J be the
interval of same center and length half, and take f constructed as wished, but for
the open set J ∪(−J). Finally, write f = φ+ψ, with φ := fχc(J∪(−J)). Then using
the maximal theorem we know that supr<1 |φr| ∈ Lp(T), while the Poisson kernel
Pt(x− y) is uniformly bounded for x /∈ U and y ∈ J ∪ (−J), so that supr<1 |ψr| is
uniformly bounded outside U .

In the case (ii), the proof is more technical, f being only a distribution. We use
the fact that derivatives of the Poisson kernel Pt(x− y) are also uniformly bounded
for x /∈ U and y ∈ J ∪ (−J).

�
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