Adaptive Importance Sampling in General Mixture Classes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Adaptive Importance Sampling in General Mixture Classes

Résumé

In this paper, we propose an adaptive algorithm that iteratively updates both the weights and component parameters of a mixture importance sampling density so as to optimise the importance sampling performances, as measured by an entropy criterion. The method is shown to be applicable to a wide class of importance sampling densities, which includes in particular mixtures of multivariate Student t distributions. The performances of the proposed scheme are studied on both artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation device which can be easily incorporated in the updating scheme.

Domaines

Calcul [stat.CO]
Fichier principal
Vignette du fichier
CDGMR07.pdf (370.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00180669 , version 1 (19-10-2007)
hal-00180669 , version 2 (27-02-2008)
hal-00180669 , version 3 (30-04-2008)
hal-00180669 , version 4 (30-05-2008)

Identifiants

Citer

Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin, Christian P. Robert. Adaptive Importance Sampling in General Mixture Classes. 2007. ⟨hal-00180669v1⟩
929 Consultations
981 Téléchargements

Altmetric

Partager

More