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Abstract

In this paper, we propose an adaptive algorithm that iteratively updates both the weights and
component parameters of a mixture importance sampling density so as to optimise the importance
sampling performances, as measured by an entropy criterion. The method is shown to be appli-
cable to a wide class of importance sampling densities, which includes in particular mixtures of
multivariate Student t distributions. The performances of the proposed scheme are studied on both
artificial and real examples, highlighting in particular the benefit of a novel Rao-Blackwellisation
device which can be easily incorporated in the updating scheme.
Keywords: Importance Sampling mixtures, adaptive Monte Carlo, Population Monte Carlo,
entropy.

1 Introduction

In recent years, there has been a renewed interest in using Monte Carlo procedures based on Impor-
tance Sampling (abbreviated to IS in the following) for inference tasks. Compared to alternatives
such as Markov Chain Monte Carlo methods, the main appeal of IS procedures lies in the possibility
of developing parallel implementations, which becomes more and more important with the general-
isation of multiple core machines and computer clusters. Importance sampling procedures are also
attractive in that they allow for an easy assessment of the Monte Carlo error and, correlatively, for
the development of learning mechanisms. In many applications, the fact that IS procedures may be
tuned—by choosing an appropriate IS density—to minimise the approximation error for a specific
function of interest is also crucial. On the other hand, the shortcomings of IS approaches are also
well-known, including a poor scaling to highly multidimensional problems and an acute sensitivity to
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the choice of the IS density combined with the fact that it is impossible to come up with a universally
efficient IS density.

Adaptive Monte Carlo is a natural solution to remedy for the latter class of difficulties by gradually
improving the IS density based on some form of Monte Carlo approximation. While there exist a
wide variety of solutions in the literature (see, e.g. Robert and Casella, 2004, Chapter 14), this
paper concentrates on the construction of iterated importance sampling schemes or population Monte
Carlo. Population Monte Carlo (or PMC) was introduced by Cappé et al. (2004) as an repeated
Sampling Importance Resampling (SIR) procedure: once a sample (X1, . . . ,XN ) is produced by SIR,
it provides an approximation to the target distribution π and can be used as a stepping stone towards
a better approximation to π. More precisely, if (X1, . . . ,XN ) is a sample approximately distributed
from π, it may be perturbed stochastically using an arbitrary Markov transition kernel q(x, x′) so
as to produce new sample (X ′

1, . . . ,X
′
N ). Conducting a resampling step based on the IS weights

ωi = π(X ′
i)/q(Xi,X

′
i), we will then produce a new sample (X̃1, . . . , X̃N ) that also constitutes an

approximation to the target distribution π. Repeating this scheme in an iterative manner is however
only of interest if samples that have been previously simulated are used to update (or adapt) the
kernel q(x, x′), in the sense that keeping the same kernel q over iterations does not modify the
statistical properties of the sample produced at each iteration and, therefore, reduces the efficiency
of the approximation by introducing extra Monte Carlo variance. Failing to improve upon the choice
of the kernel q thus cancels the appeal of using several iterations, when compared with one single IS
draw with the same total sample size (see Douc et al., 2007a).

Population Monte Carlo therefore requires an updating scheme that takes advantage of previously
generated samples so that it improves the choice of the IS transition kernel against a given measure
of efficiency. In the approach advocated by Douc et al. (2007a), one considers a transition kernel q
consisting of a mixture of fixed transition kernels

qα(x, x′) =

D∑

d=1

αdqd(x, x′) ,

D∑

d=1

αd = 1 , (1)

whose weights α1, . . . , αD are tuned adaptively. The proposed adaptation procedure aims at min-
imising the deviance or entropy criterion between the kernel qα and the target π,

E(π, qα) = E
X
π [D(π‖qα(X, ·))] , (2)

where D(p‖q) =
∫

log{p(x)/q(x)} p(x)dx denotes the Kullback-Leibler divergence (also called relative
entropy), and where the expectation is taken under the target distribution X ∼ π since the kernels
qd(x, x′) depend on the starting value x. In the sequel, we refer to the criterion in (2) as the entropy
criterion as it is obviously related to the performance measure used in the cross-entropy method of
Rubinstein and Kroese (2004). In Douc et al. (2007b), a version of this algorithm was developed to
minimise the asymptotic variance of the IS procedure, for a specific function of interest, in lieu of the
entropy criterion.

A major limitation in the approaches of both Douc et al. (2007a,b) is that the proposal kernels
qd remain fixed over the iterative process while only the mixture weights αd get improved. In the
present contribution, we remove this limitation by extending the framework of Douc et al. (2007a) to
allow for the adaption of IS densities of the form

q(α,θ)(x) =
D∑

d=1

αdqd(x; θd) , (3)

with respect to both the weights αd and the internal parameters θd of the component densities. In
theory, as explained through the example considered in Section 4, the proposed adaptive scheme,
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which relies on an integrated EM update mechanism, is applicable to more general families of latent-
data IS densities. This proposed extension and, in particular, the introduction of (multidimensional)
scaling parameters raises challenging robustness issues for which we propose a Rao-Blackwellisation
scheme that empirically appears to be very efficient while inducing a modest additional algorithmic
complexity.

Note that we consider here the generic entropy criterion of Douc et al. (2007a) rather than the
function-specific variance minimisation objective of Douc et al. (2007b). This choice is motivated by
the recognition that in most applications, the IS density is expected to perform well for a range of
typical functions of interest rather than for a specific target function h. In addition, the generalisation
of the approach of Douc et al. (2007b) to a class of mixture IS densities that are parameterised by
more than the weights remains an open question (see also Section 5).

A second remark is that in contrast to the previously cited works, we consider in this paper
only “global” independent IS densities of the form given in (3). Thus the proposed scheme really
is an iterated importance sampling scheme, contrary to what happens when using more general IS
transition kernels as in (1). Obviously, resorting to moves that depend on the current sample is initially
attractive because it allows for some local moves as opposed to the global exploration provided by
independent IS densities. However, the fact that the entropy criterion in (2) is a global measure of fit
tends to modify the parameters of each transition kernel depending on its average performance over
the whole sample, rather than locally. In addition, structurally imposing a dependence on the points
sampled at the previous iteration induces some extra-variability which can be detrimental when more
parameters are to be estimated.

The paper is organised as follows: In Section 2, we develop a generic updating scheme for in-
dependent IS mixtures (3), establishing that the integrated EM argument of Douc et al. (2007a)
remains valid in our setting. Note once again that the integrated EM update mechanism we uncover
in this paper is applicable to all missing data representations of the proposal kernel, and not only to
finite mixtures. In Section 3, we consider the case of Gaussian mixtures which naturally extend the
case of mixtures of Gaussian random walks with fixed covariance structure considered in Douc et al.
(2007a,b). In Section 4, we show that the algorithm also applies to mixture of multivariate t distri-
butions with the continuous scale mixing representation used in Peel and McLachlan (2000). Section
5 provides some conclusive remarks about the performances of this approach as well as possible
extensions.

2 Updating the IS density

2.1 Entropies and perplexity

When considering independent mixture IS densities of the form (3), the entropy criterion E defined
in (2) reduces to the Kullback-Leibler divergence between the target density π and the mixture q(α,θ):

E(π, q(α,θ)) = D(π‖q(α,θ)) =

∫
log

(
π(x)

∑D
d=1 αdqd(x; θd)

)
π(x)dx . (4)

As usual in applications of the IS approach to Bayesian inference, the target density π is known up
to a normalisation constant only and we will focus on the self-normalised version of IS which only
requires the knowledge of an unnormalised version πunn of π (Geweke, 1989). As a side comment,
note that while E(π, q(α,θ)) is a convex function of the weights α1, . . . , αD (Douc et al., 2007a), it is
generally not so when also optimising with respect to the component parameters θ1, . . . , θD.

It is well known that if one considers a function h of interest, the self-normalised IS estimation
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of its expectation π̂(h) =
∑N

i=1 ω̄ih(Xi), where ω̄i = (π(Xi)/q(α,θ)(Xi))
/
(
∑N

j=1 π(Xj)/q(α,θ)(Xj)) and
Xi ∼ q(α,θ), has an asymptotic variance of

υ(h) =

∫
{h(x) − π(h)}2 π2(x)/qα,θ(x)dx ,

assuming that
∫

(1 + h2(x))π2(x)/qα,θ(x)dx < ∞. In addition, this asymptotic variance may be

consistently estimated using the IS sample itself as N
∑N

i=1 ω̄2
i {h(Xi) − π̂(h)}2 (Geweke, 1989).

Obviously, for a given function h, there is no direct link between υ(h) and the entropy criterion
in (4), a fact that motivated the work of Douc et al. (2007b). However it is easily shown that

sup
{h:‖h−π(h)‖∞≤M}

υ(h) = M2

∫
π2(x)/q(α,θ)(x)dx,

where the latter integral term is lower and upper bounded by 1 and exp
[
E(π, q(α,θ))

]
respectively,

by direct applications of Jensen’s inequality. Hence minimising E(π, q(α,θ)) indeed reduces the worst
case performance of the IS approach, at least for bounded functions. In addition, rewriting

exp
[
−E(π, q(α,θ))

]
= exp

(∫
− log

πunn(x)

q(α,θ)(x)
π(x)dx

)(∫
πunn(x)dx

)

and estimating the first integral by self-normalised IS as

−
N∑

i=1

ω̄i log
πnn(Xi)

q(α,θ)(Xi)

and the second one by classical IS, as

1/N

N∑

i=1

πnn(Xi)/q(α,θ)(Xi),

shows that exp(HN )/N , where HN = −
∑N

i=1 ω̄i log ω̄i is the Shannon entropy of the normalised
IS weights, is an estimator of the inverse of the term exp

[
E(π, q(α,θ))

]
. Thus, minimisation of the

entropy criterion is connected with the maximisation of exp(HN )/N , were HN is the entropy of
the IS weights, a frequently used criterion for assessing the quality of an IS sample—together with
the so-called Effective Sample Size (ESS) criterion (Chen and Liu, 1996, Doucet et al., 2001, Cappé
et al., 2005). In the following, we refer to exp(HN )/N as the normalised perplexity of the IS weights,
following the terminology in use in the field of natural language processing.

2.2 Integrated updates

Let αt =
(
αt

1, . . . , α
t
D

)
and θt =

(
θt
1, . . . , θ

t
D

)
denote, respectively, the mixture weights and the

component parameters at the t-th iteration of the algorithm (where t = 1, . . . , T ). In order to
update the parameters (αt, θt) of the independent IS density (3), we will take advantage of the latent
variable structure that underlines the objective function (4). The resulting algorithm—still theoretical
at this stage as it involves integration with respect to π—may be interpreted as an integrated EM
(Expectation-Maximisation) scheme that we now describe.

Given that minimising (4) in (α, θ) is equivalent to maximising

∫
log

(
D∑

d=1

αdqd(x; θd)

)
π(x) dx ,
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we are facing a task that formally resembles standard mixture maximum likelihood estimation but
with an integration with respect to π replacing the empirical sum over observations. As usual in
mixtures, the latent variable Z is the component indicator, with values in {1, . . . ,D} such that the
joint density f of x and z satisfies

f(z) = αz and f(x|z) = qz(x; θz) ,

which produces (3) as the marginal in x. At iteration t of our algorithm, we can therefore take
advantage of this latent variable representation by considering the expected complete log-likelihood

E
X
π

[
E

Z
(αt,θt) {log (αZqZ(X; θZ)) |X}

]
,

where the inner expectation is computed under the conditional distribution of Z for the current value
of the parameters, (αt, θt), i.e.

f(z|x) = αt
zqz(x; θt

z)

/ D∑

d=1

αt
dqd(x; θt

d) .

The updating mechanism in our algorithm then corresponds to setting the new parameters (αt+1, θt+1)
equal to

(αt+1, θt+1) = arg max
(α,θ)

E
X
π

[
E

Z
(αt,θt) {log(αZqZ(X; θZ))|X}

]
,

as in a regular EM estimation of the parameters of a mixture, except for the extra expectation over
X. The convexity argument that shows that EM increases the objective function at each step also
apply in this setup. Solving the maximisation program, we have

(αt+1, θt+1) = arg max
(α,θ)

(
E

X
π

[
E

Z
(αt,θt) {log(αZ)|X}

]
+ E

X
π

[
E

Z
(αt,θt) {log(qZ(X; θZ))|X}

])
.

If we define g1(α) = E
X
π

[
E

Z
(αt,θt) {log(αZ)|X}

]
and g2(θ) = E

X
π

[
E

Z
(αt,θt) {log(qZ(X; θZ))|X}

]
, we get

(αt+1, θt+1) = arg max
(α,θ)

(g1(α) + g2(θ)) =

(
arg max

α
g1(α), arg max

θ
g2(θ)

)
.

Therefore, setting

ρd(X;α, θ) = αdqd(X; θd)

/ D∑

ℓ=1

αℓqℓ(X; θℓ) , (5)

we need to solve

αt+1 = arg max
α

E
X
π

[
D∑

d=1

ρd(X;αt, θt) log(αd)

]
,

and, for d ∈ {1, . . . ,D}, we obtain

αt+1
d = E

X
π

[
ρd(X;αt, θt)

]
. (6)

Similarly,

θt+1 = arg max
θ

E
X
π

[
D∑

d=1

ρd(X;αt, θt) log(qd(X; θd))

]
,

and, for d ∈ {1, . . . ,D},

θt+1
d = arg max

θd

E
X
π

[
ρd(X;αt, θt) log(qd(X; θd))

]
. (7)
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As in the regular mixture estimation problem, the resolution of this maximisation program ulti-
mately depends on the shape of the density qd. If qd belongs to an exponential family, it is easy to
derive a “closed-form” solution, which however involves expectations under π. Section 3 provides an
illustration of this fact in the Gaussian case, while the non-exponential Student’s t case is considered
in Section 4.

2.3 Approximate updates

As argued before, the adaptivity of the proposed procedure is achieved by updating the parameters
based on the previously simulated sample. We thus start the PMC algorithm by arbitrarily fixing
the mixture parameters (α0, θ0) and we then sample from the resulting proposal

∑
α0

dqd(x; θ0
d) to

obtain our initial sample (Xi,0)1≤i≤N , associated with the latent variables (Zi,0)1≤i≤N that indicate
from which component of the mixture the corresponding (Xi,0)1≤i≤N have been generated. From
this stage, we proceed recursively. Starting at time t from a sample (Xi,t)1≤i≤N , associated with
(Zi,t)1≤i≤N and with (αt,N , θt,N ), we denote by ω̄i,t the normalised importance weights of the sample
point Xi,t:

ω̄i,t =
π(Xi,t)∑D

d=1 αt,N
d qd(Xi,t; θ

t,N
d )

/ N∑

j=1

π(Xj,t)∑D
d=1 αt,N

d qd(Xj,t; θ
t,N
d )

. (8)

To approximate (6) and (7), Douc et al. (2007a) proposed the following update rule:

αt+1,N
d =

N∑

i=1

ω̄i,t1{Zi,t = d} ,

θt+1,N
d = arg max

θd

[
N∑

i=1

ω̄i,t1{Zi,t = d} log
{

qd

(
Xi,t; θ

t,N
d

)}]
. (9)

The computational cost of this update is of order N whatever the number D of components is, since
the weight and the parameter of each component are updated based only on the points that were
actually generated from this component. However, this observation also suggests that (9) may be
highly variable when N is small and/or D becomes larger. To make the update more robust, we
propose a simple Rao-Blackwellisation step that consists in replacing 1{Zi,t = d} with its conditional

expectation given Xi,t, that is, ρd

(
Xi,t;α

t,N
d , θt,N

d

)
:

αt+1,N
d =

N∑

i=1

ω̄i,tρd

(
Xi,t;α

t,N
d , θt,N

d

)
,

θt+1,N
d = arg max

θd

[
N∑

i=1

ω̄i,tρd

(
Xi,t;α

t,N
d , θt,N

d

)
log
{

qd

(
Xi,t; θ

t,N
d

)}]
. (10)

Examining (5) indicates why the evaluation of the posterior probabilities ρd(Xi,t;α
t,N
d , θt,N

d ) does not
represent a significant additional computation cost in the PMC scheme, given that the denominator
of this expression has already been computed when evaluating the IS weights according to (8). The
most significant difference between and (9) and (10) is that, with the latter, all points contribute
to the updating of the d-th component, for an overall cost proportional to D × N . Note however
that in many applications of interest, the most significant computational cost is associated with the
evaluation of π so that the cost of the update is mostly negligible, even with the Rao-Blackwellised
version.

Convergence of the estimated updated parameters as N increases can be established using the
same approach as in Douc et al. (2007a,b), relying mainly on the convergence property of triangular
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arrays of random variables (see Theorem A.1 in Douc et al., 2007a). For the Rao-Blackwellised version,
assuming that for all θ’s, π(qd(·; θd) = 0) = 0, for all α’s and θ’s, ρd(·;α, θ) log qd(·, θd) ∈ L1(π), and,
some (uniform in x) regularity conditions on qd(x; θ) viewed as a function of θ, yield

αt+1,N
d

P
→ αt+1

d , θt+1,N
d

P
→ θt+1

d

when N goes to infinity. Note that we do not expand on the regularity conditions imposed on qd

since, for the algorithm to be efficient, we definitely need a closed-form expression on the parameter
updates. It is then easier to deal with the convergence of the approximation of these update formulas
on a case-by-case basis, as will be seen for instance in the following Gaussian example.

3 The Gaussian mixture case

As a first example, we consider the case of p-dimensional Gaussian mixture IS densities of the form

qd(X; θd) = {(2π)p |Σd|}
−1/2 exp

{
−

1

2
(X − µd)

TΣ−1
d (X − µd)

}
,

where θd = (µd,Σd) denotes the parameters of the d-th Gaussian component density. This parametri-
sation of the IS density provides a general framework for approximating multivariate targets π and
the corresponding adaptive algorithm is a straightforward instance of the general framework discussed
in the previous section.

3.1 Update formulas

The integrated update formulas are obtained as the solution of

θt+1,N
d = arg min

θ
E

X
π

[
ρd(X;αt, θt)

(
log |Σd| + (X − µd)

TΣ−1
d (X − µd)

)]
.

It is straightforward to check that the infimum is reached when, for d ∈ {1, . . . ,D},

µt+1
d =

E
X
π

[
ρd(X;αt, θt)X

]

EX
π [ρd(X;αt, θt)]

,

and

Σt+1
d =

E
X
π

[
ρd(X;αt, θt)(X − µt+1

d )(X − µt+1
d )T

]

EX
π [ρd(X;αt, θt)]

.

At iteration t + 1 of the PMC algorithm, both the numerator and the denominator of each of the
above expressions are approximated using self-normalised importance sampling, yielding the following
empirical update equations for the basic updating strategy

αt+1,N
d =

N∑

i=1

ω̄i,t1{Zi,t = d} ,

µt+1,N
d =

∑N
i=1 ω̄i,tXi,t1{Zi,t = d}
∑N

i=1 ω̄i,t1{Zi,t = d}
, (11)

Σt+1,N
d =

∑N
i=1 ω̄i,t(Xi,t − µt+1,N

d )(Xi,t − µt+1,N
d )T1{Zi,t = d}

∑N
i=1 ω̄i,t1{Zi,t = d}

,
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and

αt+1,N
d =

N∑

i=1

ω̄i,tρd(Xi,t;α
t,N , θt,N ) ,

µt+1,N
d =

∑N
i=1 ω̄i,tXi,tρd(Xi,t;α

t,N , θt,N)
∑N

i=1 ω̄i,tρd(Xi,t;αt,N , θt,N )
, (12)

Σt+1,N
d =

∑N
i=1 ω̄i,t

(
Xi,t − µt+1,N

d

)(
Xi,t − µt+1,N

d

)T
ρd(Xi,t;α

t,N , θt,N )
∑N

i=1 ω̄i,tρd(Xi,t;αt,N , θt,N )
,

for the Rao-Blackwellised scheme. Note that as discussed at the end of Section 2, one observes that
in the Gaussian case the convergence of the parameter update can be established by assuming only
that ρd(x;α, θ)x2 is integrable with respect to π.

3.2 A simulation experiment

To illustrate the results of the algorithm presented above, we consider a toy example in which the
target density consists of a mixture of two multivariate Gaussian densities. The appeal of this example
is that it is sufficiently simple to allow for an explicit characterisation of the attractive points for the
adaptive procedure, while still illustrating the variety of situations found in more realistic applications.
In particular, the model contains an attractive point that does not correspond to the global minimum
of the entropy criterion as well as some regions of attraction that can eventually lead to a failure of
the algorithm. The results obtained on this example also illustrate the improvement brought by the
Rao-Blackwellised update formulas in (12).

The target π is a mixture of two p-dimensional Gaussian densities such that

π(x) = 0.5N (x;−sup, Ip) + 0.5N (x; sup, Ip) ,

when up is the p-dimensional vector whose coordinates are equal to 1 and Ip stands for the identity
matrix. In the sequel, we focus on the case where p = 10 and s = 2. Note that one should not
be misled by the image given by the marginal densities of π: in the ten dimensional space, the two
components of π are indeed very far from one another. It is for instance straightforward to check that
the Kullback-Leibler divergence between the two components of π, D {N (−sup, Ip)‖N (−sup, Ip)},
is equal to 1

2‖2sup‖
2 = 2s2p, that is 80 in the case under consideration. In particular, if we were to

use one of the components of the mixture as an IS density for the other, we know from the arguments
exposed at the beginning of Section 2 that the normalised perplexity of the weight will eventually tend
to exp(−80). This number is so small, that for any feasible sample size, using one of the component
densities of π as an IS instrumental density for the other component or even for π itself can only
provide useless biased estimates.

The initial IS density q0 is chosen here as the isotropic ten-dimensional Gaussian density with a
covariance matrix of 5Ip. The performances of q0 as an importance sampling density, when compared
to various other alternatives, are fully detailed in Table 1 below but the general comment is that it
corresponds to a poor initial guess which would provide highly variable results when used with any
sample size under 50, 000.

In addition to figures related to the initial IS density q0, Table 1 also reports performance obtained
with the best fitting Gaussian IS density (with respect to the entropy criterion), which is straightfor-
wardly obtained as the centred Gaussian density whose covariance matrix matches the one of π, that
is, Ip + s2upu

T
p . Of course the best possible performances achievable with a mixture of two Gaussian

densities, always with the entropy criterion, is obtained when using π as an IS density (second line
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Proposal N-PERP N-ESS σ2(x1)

q0
† 6.5E-4 1.5E-4 37E3

Best fitting Gaussian † 0.31 0.27 19
Target mixture † 1 † 1 † 5 †

Best fitting Gaussian (defensive option) 0.28 0.23 22
Best fitting two Gaussian mixture (defensive option) 0.89 0.87 5.8

Table 1: Performance of various importance sampling densities in terms of N-PERP: Normalised
perplexity; N-ESS: Normalised Effective Sample Size; σ2(x1): Asymptotic variance of self-normalised
IS estimator for the coordinate projection function h(x) = x1. Quantities marked with a dagger sign
are straightforward to determine, all others have been obtained using IS with a sample size of one
million.

of Table 1). Finally both final lines of Table 1 report the best fit obtained with IS densities of the
form 0.9

∑D
d=1 αdN (µd,Σd) + 0.1q0(·) when, respectively, D = 1 and D = 2 (further comments on

the use of these are given below). As a general comment on Table 1, note that the variations of the
perplexity of the IS weights, of the ESS and of the asymptotic variance of the IS estimate for the
coordinate projection function are very correlated. This is a phenomenon that we have observed on
many examples and which justifies our postulate that minimising the entropy criterion does provide
very significant variance reductions for the IS estimate of “typical” functions of interest.

In this example, one may categorise the possible outcomes of adaptive IS algorithms based on
mixtures of Gaussian IS densities into mostly four situations:

Disastrous (D.) After T iterations of the PMC scheme, q(αT ,θT ) is not a valid IS density and may
lead to inconsistent estimates. Typically, this may happen if q(αT ,θT ) becomes much too peaky
with light tails. As discussed above, it will also practically be the case if the algorithm only
succeeds in fitting q(αT ,θT ) to one of both Gaussian modes of π. Another disastrous outcome is
when the direct application of the adaptation rules described above leads to numerical problems,
usually due to the poor conditioning of some of the covariance matrices Σd. Rather than fixing
these issues by ad-hoc solutions (eg. diagonal loading), which could nonetheless be useful in
practical applications, we consider below more principled ways of making the algorithm more
resistant to such failures.

Mediocre (M.) After adaptation, q(αT ,θT ) is not significantly better than q0 in terms of the perfor-
mance criteria displayed in Table 1 and, in this case, the adaptation is useless.

Good (G.) After T iterations, q(αT ,θT ) selects the best fitting Gaussian approximation (second line
of Table 1) which already provides a very substantial improvement as it results in variance
reductions by about four orders of magnitude for typical functions of interest.

Excellent (E.) After T iterations, q(αT ,θT ) selects the best fitting mixture of two Gaussian densities,
which in this somewhat artificial example corresponds to a perfect fit of π. Note, however that,
the actual gain over the previous outcome is rather moderate with a reduction of variance by a
factor less than four.

Of course, a very important parameter here is the IS sample size N : for a given initial IS density
q0, if N is too small, any method based on IS is bound to fail, conversely when N gets large all
reasonable algorithms are expected to reach either the G. or E. result. Note that with local adaptive
rules such as the ones proposed in this paper, it is not possible to guarantee that only the E. outcome
will be achieved as the best fitting Gaussian IS density is indeed a stationary point (and in fact a
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local minima) of the entropy criterion. So, depending on the initialisation, there always is a non zero
probability that the algorithm converges to the G. situation only.

To focus on situations where algorithmic robustness is an issue, we purposely chose to select a
rather small IS sample size of N = 5, 000 points. As discussed above, direct IS estimates using q0 as
IS density would be mostly useless with such a modest sample size. We evaluated four algorithmic
versions of the PMC algorithm. The first, Plain PMC, uses the parameter update formulas in (11)
and q0 is only used as an initialisation value, which is common to all D components of the mixture
(which also initially have equal weights). Only the means of the components are slightly perturbed to
make it possible for the adaptation procedure to actually provide distinct mixture components. One
drawback of the plain PMC approach is that we do not ensure during the course of the algorithm
that the adapted mixture IS density remains valid, in particular that it provides reliable estimates of
the parameter update formulas. To guarantee that the IS weights stay well behaved, we consider a
version of the PMC algorithm in which the IS density is of the form

(1 − α0)

D∑

d=1

αdN (µd,Σd) + α0q0

with the difference that α0 is a fixed parameter which is not adapted. The aim of this version,
which we call Defensive PMC in reference to the work of Hesterberg (1995), is to guarantee that the
importance function remains bounded by α−1

0 π(x)/q0(x), whatever happens during the adaptation,
thus guaranteeing a finite variance. Since q0 is a poor IS density, it is preferable to keep α0 as low
as possible and we used α0 = 0.1 in all the following simulations. As detailed in both last lines of
Table 1, this modification will typically slightly limit the performances achievable by the adaptation
procedure, although this drawback could probably be avoided by allowing for a decrease of α0 during
the iterations of the PMC. The parameter update formulas for this modified mixture model are very
easily deduced from (11) and are omitted here for the sake of conciseness. The third version we
considered is termed Rao-Blackwellised PMC and consists in replacing the update equations (11) by
their Rao-Blackwellised version (12). Finally, we consider a fourth option in which both the defensive
mixture density and the Rao-Blackwellised update formulas are used.

All simulations were carried out using a sample size of N = 5, 000, 20 iterations of the PMC
algorithm and Gaussian mixtures with D = 3 components. Note that we purposely avoided to chose
D = 2 to avoid the very artificial “perfect fit” phenomenon. This also means that for most runs of
the algorithm, at least one component will disappear (by convergence of its weight to zero) or will be
duplicated, with several components sharing very similar parameters.

Disastrous Mediocre Good Excellent

Plain 55 0 33 12

Defensive 13 51 30 6

R.-B. 18 1 70 11

Defensive + R.-B. 5 11 76 8

Table 2: Number of outcomes of each category for the four algorithmic versions, as recorded from
100 independent runs.

Table 2 display the performances of the four algorithms in repeated independent adaptation runs.
The most significant observation about Table 2 is the large gap in robustness between the non Rao-
Blackwellised versions of the algorithm, which returned disastrous or mediocre results in about 60%
of the cases, a fraction that falls bellow 20% when the Rao-Blackwellised update formulas are used.
Obviously the fact that the Rao-Blackwellised updates are based on all simulated values and not just
on those actually simulated from a particular mixture component is a major source of robustness
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of the method when the sample size N is small, given the misfit of the initial IS density q0. The
same remark also applies when the PMC algorithm is to be implemented with a large number D of
components. The role of the defensive mixture component is more modest although it does improve
the performances of both versions of the algorithm (non Rao-Blackwellised and Rao-Blackwellised
altogether), at the price of a slight reduction of the frequency of the “Excellent” outcome. Also
notice that the results obtained when the defensive mixture component is used are slightly beyond
those of the unconstrained adaptation (see Table 1). The frequency of the perfect or “Excellent”
match is about 10% for all methods but this is a consequence of the local nature of the adaptation
rule as well as of the choice of the initialisation of the algorithm. It should be stressed however
that as we are not interested in modelling π by a mixture but rather that we are seeking good IS
densities, the solutions obtained in the G. or E. situations are only mildly different in this respect
(see Table 1). As a final comment, recall that the results presented above have been obtained with a
fairly small sample size of N = 5, 000. Increasing N quickly reduces the failure rate of all algorithms:
for N = 20, 000 for instance, the failure rate of the plain PMC algorithm drops to 7/100 while the
Rao-Blackwellised versions achieve either the G. or E. result (and mostly the G. one, given the chosen
initialisation) for all runs.

4 Robustification via mixtures of multivariate t’s

We now consider the setting of a proposal composed of a mixture of p-dimensional t distributions,

D∑

d=1

αdT (νd, µd,Σd) . (13)

We here follow the recommendations of West (1992) and Oh and Berger (1993) who proposed using
mixtures of t distributions in importance sampling. The t mixture is preferable to a normal mixture
because of its heavier tails that can capture a wider range of non-Gaussian targets with a smaller
number of components. This alternative setting is more challenging however and one must take
advantage of the missing variable representation of the t distribution itself to achieve a closed-form
updating of the parameters (µd,Σd)d approximating (7), since a true closed-form cannot be derived.

4.1 The latent-data framework

Using the classical normal/chi-squared decomposition of the t distribution, a joint distribution asso-
ciated with the t mixture proposal (13) is

f(x, y, z) ∝ αz|Σz|
−1/2 exp

{
−(x − µz)

TΣ−1
z (x − µz)y/2νz

}
y(νz+p)/2−1e−y/2

∝ αz ϕ(x;µz , νzΣz/y) ς(y; νz/2, 1/2) ,

where, as above, x corresponds to the observable in (13), z corresponds to the mixture indicator, and
y corresponds to the χ2

ν completion. The normal density is denoted by ϕ and the gamma density by
ς. Both y and z correspond to latent variables in that the integral of the above in (y, z) returns (13).

In the associated PMC algorithm, we only update the expectations and the covariance structures
of the t distributions and not the number of degrees of freedom, given that there is no closed-form
solution for the later. In that case, θd = (µd,Σd) and, for each d = 1, . . . ,D, the number of degrees
of freedom νd is fixed.

At iteration t, the integrated EM update of the parameter will involve the following “E” function

Q{(αt, θt), (α, θ)} = E
X
π

[
E

Y,Z
(αt,θt) { log(αZ) + log(ϕ(X;µZ , νZΣz/Y ))|X}

]
,
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since the χ2 part does not involve the parameter θ = (µ,Σ). Given that

Y,Z|X, θ ∼ f(y, z|x) ∝ αz ϕ(x;µz, νzΣz/y) ς(y; νz/2, 1/2) ,

we have that

Y |X,Z = d, θ ∼ Ga

[
(νd + p)/2,

1

2

{
1 + (X − µd)

TΣ−1
d (X − µd)/νd

}]

and therefore

Q{(αt, θt), (α, θ)} = E
X
π

[
E

Z
(αt,θt) {log(αZ)|X}

]

−
1

2
E

X
π

[
E

Y,Z
(αt,θt)

{
log |ΣZ | +

(X − µZ)TΣZ
−1(X − µZ)Y

νZ

∣∣∣∣X
}]

= E
X
π

[
D∑

d=1

ρd(X;αt, θt) log(α′
d)

]

−
1

2
E

X
π

[
D∑

d=1

ρd(X;αt, θt)

{
log |Σd| + (X − µd)

TΣd
−1(X − µd)

×
νd + p

νd + (X − µt
d)

T(Σt
d)

−1(X − µt
d)

}]
,

where we have used both the definition in (5),

ρd(X;αt, θt) = Pαt,θt(Z = d|X) =
αt

dt(x; νd, µ
t
d,Σ

t
d)∑D

ℓ=1 αt
ℓt(x; νℓ, µ

t
ℓ,Σ

t
ℓ)

,

with t(x; ν, µ,Σ) denoting the T (ν, µ,Σ) density, and the fact that

γd(X; θt) = E
Y
θt {Y/νd|X,Z = d} =

νd + p

νd + (X − µt
d)

T(Σt
d)

−1(X − µt
d)

.

Therefore, the “M” step of the integrated EM update is

αt+1
d = E

X
π

[
ρd(X;αt, θt)

]

µt+1
d =

E
X
π

[
ρd(X;αt, θt)γd(X; θt)X

]

EX
π [ρd(X;αt, θt)γd(X; θt)]

Σt+1
d =

E
X
π

[
ρd(X;αt, θt)γd(X; θt)(X − µt+1

d )(X − µt+1
d )T

]

EX
π [ρd(X;αt, θt)]

.

While the first update is the generic weight modification (6), the latter formulae are (up to the
integration with respect to X) essentially those found in Peel and McLachlan (2000) for a mixture of
t distributions.

4.2 Parameter update

As in Section 3.1, the empirical update equations are obtained by using self-normalised IS with weights
ω̄i,t given by (8) for both the numerator and the denominator of each of the above expressions. The
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Rao-Blackwellised approximation based on (10) yields

αt+1,N
d =

N∑

i=1

ω̄i,t ρd(Xi,t;α
t,N , θt,N ) ,

µt+1,N
d =

∑N
i=1 ω̄i,t ρd(Xi,t;α

t,N , θt,N ) γd(Xi,t; θ
t,N)Xi,t∑N

i=1 ω̄i,t ρd(Xi,t;αt,N , θt,N ) γd(Xi,t; θt,N )
,

Σt+1,N
d =

∑N
i=1 ω̄i,t ρd(Xi,t;α

t,N , θt,N ) γd(Xi,t; θ
t,N) (Xi,t − µt+1,N

d )(Xi,t − µt+1,N
d )T

∑N
i=1 ω̄i,t ρd(Xi,t;αt,N , θt,N )

,

while the standard update equations, based on (9), are obtained by replacing ρd(Xi,t;α
t,N , θt,N ) by1{Xi,t = d} in the above equations.

4.3 Pima Indian example

As a realistic if artificial illustration of the performances of the t mixture (13), we study the posterior
distribution of the parameters of a probit model. The corresponding dataset is borrowed from the
MASS library of R (R Development Core Team, 2006). It consists in the records of 532 Pima Indian
women who were tested by the U.S. National Institute of Diabetes and Digestive and Kidney Diseases
for diabetes. Four quantitative covariates were recorded, along with the presence or absence of
diabetes. The corresponding probit model analyses the presence of diabetes, i.e.

Pβ(y = 1|x) = 1 − Pβ(y = 0|x) = Φ(β0 + xT(β1, β2, β3, β4))

with β = (β0, . . . , β4), x made of four covariates, the number of pregnancies, the plasma glucose
concentration, the body mass index weight in kg/(height in m)2, and the age, and Φ corresponds
to the cumulative distribution function of the standard normal. We use the flat prior distribution
π(β|X) ∝ 1; in that case, the 5-dimensional target posterior distribution is such that

π(β|y,X) ∝
532∏

i=1

[
Φ{β0 + (xi)T(β1, β2, β3, β4)}

]yi
[
1 − Φ{β0 + (xi)T(β1, β2, β3, β4)}

[1−yi

where xi is the value of the covariates for the i-th individuals and yi is the response of the i-th
individuals.

We first present some results for N = 10, 000 sample points and T = 500 iterations on Figures 1—
3, based on a mixture with 4 components and with the degrees of freedom chosen as ν = (3, 6, 9, 18),
respectively, when using the non Rao-Blackwellised version (9). The unrealistic value of T is cho-
sen purposely to illustrate the lack of stability of the update strategy when not using the Rao-
Blackwellised version. Indeed, as can be seen from Figure 1, which describes the evolution of the
µd’s, some components vary quite widely over iterations, but they also correspond to a rather stable
overall estimate of β,

N∑

i=1

ω̄i,T βi,T ,

equal to (−5.54, 0.051, 0.019, 0.055, 0.022) over most iterations. When looking at Figure 3, the quasi-
constant entropy estimate after iteration 100 or so shows that, even in this situation, there is little
need to perpetuate the iterations till the 500-th.

Using a Rao-Blackwellised version of the updates shows a strong stabilisation for the updates
of the parameters αd and (µd,Σd), both in the number of iterations and in the range of the pa-
rameters. The approximation to the Bayes estimate is obviously very close to the above estimation
(−5.63, 0.052, 0.019, 0.056, 0.022). Figures 4 and 5 show the immediate stabilisation provided by the
Rao-Blackwellisation step.
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Figure 1: Pima Indians: Evolution of the components of the five µd’s over 500 iterations plotted
by pairs: (clockwise from upper left side) (1, 2), (3, 4), (4, 1) and (2, 3). The colour code is blue for
µ1, yellow for µ2, brown for µ3 and red for µ4. The additional dark path corresponds to the estimate
of β. All µd’s were started in the vicinity of the MLE β̂.
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Figure 2: Pima Indians: Evolution of the five Σd’s over 500 iterations plotted by pairs for the
diagonal elements: (clockwise from upper left side) (1, 2), (3, 4), (4, 1) and (2, 3). The colour code
is blue for Σ1, yellow for Σ2, brown for Σ3 and red for Σ4. All Σd’s were started at the covariance
matrix of β̂ produced by R glm() procedure.
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Figure 3: Pima Indians: Evolution of the cumulated weights (top) and of the estimated entropy
divergence E

π[log(qα,θ(β))] (bottom).
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Figure 4: Pima Indians: Evolution of the components of the five µd’s over 50 Rao-Blackwellised
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5 Conclusions

The proposed algorithm provides a flexible and robust framework for adapting general importance
sampling densities represented as mixtures. The extension to mixtures of t distribution broadens the
scope of the method by allowing approximation of heavier tail targets. Moreover, we can extend here
the remarks made in Douc et al. (2007a,b), namely that the update mechanism provides an early
stabilisation of the parameters of the mixture. It is therefore unnecessary to rely on a large value of
T : with large enough sample sizes N at each iteration—especially on the initial iteration that requires
many points to counter-weight a potentially poor initial proposal—, it is quite uncommon to fail to
spot a stabilisation of both the estimates and of the entropy criterion within a few iterations.

While this paper relies on the generic entropy criterion to update the mixture density, we want
to stress that it is also possible to use a more focussed deviance criterion, namely the h-entropy

Eh(π, q(α,θ)) = D(πh‖q(α,θ)) , (14)

with
πh(x) ∝ |h(x) − π(h)|π(x) ,

that is tuned to the estimation of a particular function h, as it is well-known that the optimal choice
of the importance density for the self-normalised importance sampling estimator is exactly πh. Since
the normalising constant in πh does not need to be known, one can derive an adaptive algorithm that
resembles the method presented in this paper. It is expected that this modification will be helpful in
reaching IS densities that provide a low approximation error for a specific function h, which is also
an important feature of importance sampling in several applications.
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