Adaptive estimation of the dynamics of a discrete time stochastic volatility model - Archive ouverte HAL
Article Dans Une Revue Econometrics Année : 2010

Adaptive estimation of the dynamics of a discrete time stochastic volatility model

Fabienne Comte
Claire Lacour
Yves Rozenholc

Résumé

This paper is concerned with the particular hidden model: $X_{i+1}=b(X_i)+\sigma(X_i)\xi_{i+1}, Z_i=X_i+\varepsilon_i$, where $(\xi_i)$ and $(\varepsilon_i)$ are independent sequences of i.i.d. noise. Moreover, the sequences $(X_i)$ and $(\varepsilon_i)$ are independent and the distribution of $\varepsilon$ is known. Our aim is to estimate the functions $b$ and $\sigma^2$ when only observations $Z_1, \dots, Z_n$ are available. We propose to estimate $bf$ and $(b^2+\sigma^2)f$ and study the integrated mean square error of projection estimators of these functions on automatically selected projection spaces. By ratio strategy, estimators of $b$ and $\sigma^2$ are then deduced. The mean square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation experiments are provided: constants in the penalty functions defining the estimators are calibrated and the quality of the estimators is checked on several examples.
Fichier principal
Vignette du fichier
Eautoregcach.pdf (636.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00170740 , version 1 (10-09-2007)

Identifiants

Citer

Fabienne Comte, Claire Lacour, Yves Rozenholc. Adaptive estimation of the dynamics of a discrete time stochastic volatility model. Econometrics, 2010, 154 (1), pp.59-73. ⟨10.1016/j.jeconom.2009.07.001⟩. ⟨hal-00170740⟩
177 Consultations
193 Téléchargements

Altmetric

Partager

More