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Summary. This paper is concerned with the particular hidden model: Xi+1 = b(Xi)+σ(Xi)ξi+1, Zi =
Xi + εi, where (ξi) and (εi) are independent sequences of i.i.d. noise. Moreover, the sequences (Xi)
and (εi) are independent and the distribution of ε is known. Our aim is to estimate the functions b and
σ2 when only observations Z1, . . . , Zn are available. We propose to estimate bf and (b2 + σ2)f and
study the integrated mean square error of projection estimators of these functions on automatically
selected projection spaces. By ratio strategy, estimators of b and σ2 are then deduced. The mean
square risk of the resulting estimators are studied and their rates are discussed. Lastly, simulation
experiments are provided: constants in the penalty functions defining the estimators are calibrated
and the quality of the estimators is checked on several examples.

Keywords. Adaptive Estimation; Autoregression; Deconvolution; Heteroscedastic; Hidden Markov
Model; Nonparametric Projection Estimator.

1. Introduction

When price processes of assets are observed, generally in discrete time, the dynamics of the unob-
served underlying volatility process proves very interesting. Therefore, the so-called discrete time
stochastic volatility model has recently become most popular and widely studied, see Ghysels et
al. (1996) or Shephard (1996). In this paper, we propose a statistical strategy corresponding to
the following model: {

Yi = exp(Xi/2)ηi,
Xi+1 = b(Xi) + σ(Xi)ξi+1,

where (ηi) and (ξi) are two independent sequences of independent and identically distributed (i.i.d.)
random variables (noise processes). The only available observations are Y1, . . . , Yn, the process of
interest is the unobserved volatility Vi = exp(Xi/2). We describe an estimation method leading to
nonparametric estimates of the functions b and σ2 driving the dynamics of the volatility process
(Vi).

To achieve this aim, we use a deconvolution strategy, which is made possible through the
rewriting of the model as follows {

Zi = Xi + εi
Xi+1 = b(Xi) + σ(Xi)ξi+1

(1)

where εi = ln(η2
i )− E(ln(η2

i )) and Zi = ln(Y 2
i )− E(ln(η2

i )).
In such a setting, regarding the identifiability of the model, it must be assumed that the

distribution of ε, fε (or equivalently of η) is fully known. For instance, the process η is often
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modelled as a standard Gaussian i.i.d. sequence, and then εi has the distribution of ln(N (0, 1)2) +
ln(2) +C where C is the Euler constant. Van Es et al. (2005) specifically study this case in terms
of density estimation, however more general distributions can also be considered (see Comte et
al. (2006b)).

Model (1) may be considered as a non-linear autoregressive model observed with an additive
noise with known (and general) distribution. In this case, the process is sometimes called auto-
regression with errors-in-variables. Such models have already been studied, but in parametric or
semi-parametric context only (see Chanda (1995), Comte and Taupin (2001)).

Lastly, Model (1) belongs to the general class of hidden Markov models (HMM). These models
constitute a very famous class of discrete time processes with applications in various areas (see
Cappé, Moulines and Ryden (2005)). Here our model is simpler in the sense that our noise is
additive, but in standard HMMs it is assumed that the joint density of (Xi, Zi) has a parametric
form.

To our knowledge, the question of estimating b and σ2 in Model (1) on the basis of observations
Z1, . . . , Zn has not been studied yet. Only the following regressive model Zi = Xi + εi, Yi =
b(Xi) + ξi, in which (Yi) and (Zi) for i = 1, . . . , n + 1 are observed, has received attention. Then
two processes are observed, all sequences (Xi), (ξi), (εi) can be supposed independent identically
distributed (i.i.d.) and independent from each other, and (Yi) is homoscedastic (σ(x) ≡ 1). In
this context, Fan and Truong (1990), and Comte and Taupin (2007) study the problem of the
estimation of b. See also Fan et al. (1991), Fan and Masry (1992), Ioannides and Alevizos (1997),
Koo and Lee (1998). Most authors propose estimators of b based on the ratio of two estimators
and this quotient strategy is also adopted in our more general setting. More precisely, we assume
that the process (Xi) is stationary, with stationary density denoted by f , and we estimate b (resp.
b2 + σ2) as a ratio of an estimator of bf (resp. (b2 + σ2)f) divided by f .

Several papers develop estimation methods for f , see Fan (1991), Pensky and Vidakovic (1999),
Comte et al. (2006b), and the optimality of the rates studied in Fan (1991), Butucea (2004) and
Butucea and Tsybakov (2007). The adaptive estimator of Comte et al. (2006b) is used in this
study. We adopt the same type of projection strategy on automatically selected projection spaces
for the numerators. In this respect, this allows to consider general classes of noise density fε and
also various classes of regularities for the functions to estimate (bf , (b2 + σ2)f , f).

The proofs of our results involve the study of several centered empirical processes and are in-
teresting more for their general schemes than for their technical details. It is nevertheless worth
mentioning that, in the end, we obtain flexible tools that work in a satisfactory way. The pro-
grammes developed for density deconvolution in Comte et al. (2007) can indeed be generalized to
the present framework.

The plan of the paper is the following: we first give the notations, the model assumptions
and describe projection spaces in Section 2. Next, Section 3 explains the estimation strategy for
b and gives bounds of the integrated mean square risk of the estimators. Section 4 develops the
same study for the estimation of σ2. Simulation experiments are conducted in Section 5 in order
to illustrate the method and compare its performance with previous results. Lastly, proofs are
gathered in Sections 6-7-8 and an appendix, namely section 9, describes auxiliary tools.

2. General setting and assumptions

2.1. The principle
Let us assume that the sequence (Xi) is stationary and let us denote by f their stationary density.
The principle of the estimation methods relies in all cases on a “Nadaraya-Watson-strategy” in the
sense that b or b2 +σ2 are estimated as ratio of an estimator of ` = bf (respectively ϑ = (b2 +σ2)f)
and an estimator of f .
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In all cases, we use the adaptive estimator of f described in Comte et al. (2006b, 2007) which
studies independent and β-mixing contexts.

2.2. Notations and Assumptions
Subsequently we denote by u∗ the Fourier transform of the function u defined as u∗(t) =

∫
eitxu(x)dx,

and by ‖u‖, ‖u‖∞, ‖u‖∞,K , < u, v >, u ∗ v the quantities

‖u‖2 =
∫
u2(x)dx, ‖u‖∞ = sup

x∈R
|u(x)|, ‖u‖∞,K = sup

x∈K
|u(x)|,

< u, v >=
∫
u(x)v(x)dx with zz = |z|2 and u ∗ v(x) =

∫
u(t)v̄(x− t)dt.

Moreover, we recall that for any integrable and square-integrable functions u, u1, u2,

(u∗)∗(x) = 2πu(−x) and 〈u1, u2〉 = (2π)−1〈u∗1, u∗2〉. (2)

We consider the autoregressive model (1). The assumptions are the following:

A1 (i) The εi’s are i.i.d. centered (E(ε1) = 0) random variables with finite variance, E(ε2
1) = s2

ε.
The density of ε1, fε, belongs to L2(R), and for all x ∈ R, f∗ε (x) 6= 0.

(ii) The ξi’s are i.i.d. centered with unit variance (E(ξ2
1) = 1) and E(ξ3

1) = 0.
A2 The Xi’s are stationary and absolutely regular.
A3 The sequences (Xi)i∈N and (εi)i∈N are independent. The sequences (ξi)i∈N and (εi)i∈N are

independent.

The Zi’s are observed but the Xi’s are not, the stationary density f of the Xi’s is unknown and
the density fε of the εi’s is known.

Standard assumptions on b, σ and the ξi’s ensure that the sequence (Xi)i∈Z is stationary with
stationary density denoted by f . This sequence is also absolutely regular, with β-mixing coefficients
denoted by β(k), see Doukhan (1994) or Comte and Rozenholc (2002) for precise sets of conditions.
We shall consider that the mixing is at least arithmetical with rate θ, i.e. that there exists θ > 0
such that

∀k ∈ N, β(k) ≤ (1 + k)−(1+θ), (3)

or, more often, geometrical, i.e. ∃θ > 0,∀k ∈ N, β(k) ≤ e−θk. The definition of the β-mixing
coefficients and related properties are recalled in Section 9.

Moreover, as we develop an L2-strategy, we require the target functions to be square-integrable.

A4 The function to estimate (` = bf , ϑ = (b2 + σ2)f , or f) is square-integrable.

According to Assumption A3 the (unknown) density h of the Zi’s equals f ∗ fε. This implies that
h∗ = f∗f∗ε and f∗ = h∗/f∗ε , a relation which explains the estimation strategy. It is well known
that the rate of convergence for estimating f is strongly related to the rate of decrease of f∗ε . More
precisely, the smoother fε, the slower the rate of convergence for estimating f is and we shall see
that the same happens for the estimation of bf or (b2 +σ2)f . Nevertheless, this rate of convergence
can be improved by assuming some additional regularity conditions on f , bf or (b2 + σ2)f . These
regularity conditions are described by considering functions in the space:

Ss,a,r(A) = {u :
∫ +∞

−∞
|u∗(x)|2(x2 + 1)s exp{2a|x|r}dx ≤ A}, (4)
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for nonnegative constants s, a, r and A > 0. When r = 0, this corresponds to Sobolev spaces of
order s; when r > 0, a > 0, this corresponds to analytic functions, which are often called ”super-
smooth” functions.
In the following, we also assume that fε is such that

A5 For all t in R, A0(t2 + 1)−γ/2 exp{−µ|t|δ} ≤ |f∗ε (t)| ≤ A′0(t2 + 1)−γ/2 exp{−µ|t|δ}, with
γ > 1/2 if δ = 0.

Under Assumption A5, when δ = 0, the errors are usually called “ordinary smooth” errors, and
“super smooth” errors when δ > 0, µ > 0. The standard examples are the following : Gaussian or
Cauchy distributions are super smooth of order (γ = 0, µ = 1/2, δ = 2) and (γ = 0, µ = 1, δ = 1)
respectively, and the Laplace (symmetric exponential) distribution is ordinary smooth (δ = 0) of
order γ = 2. When ε = ln(η2) − E(ln(η2)) with η ∼ N (0, 1) as in Van Es et al. (2005), then ε is
super-smooth with γ = 0, µ = π/2 and δ = 1.

2.3. The projection spaces
As projection estimators are used in all cases, we hereby provide a description of the projection
spaces. Let us define

ϕ(x) =
sin(πx)
πx

and ϕm,j(x) =
√
mϕ(mx− j),

where m can be replaced by 2m. It is well known (see Meyer (1990), p.22) that {ϕm,j}j∈Z is an
orthonormal basis of the space of square integrable function having Fourier transform with compact
support included into [−πm, πm]. Such a space is denoted by Sm.

Sm = Span{ϕ
m,j
, j ∈ Z} = {f ∈ L2(R), supp(f∗) ⊂ [−mπ,mπ]}.

Moreover, (Sm)m∈Mn
, with Mn = {1, . . . ,mn}, denotes the collection of linear spaces.

In practice, we should consider the truncated spaces S
(n)
m = Span{ϕ

m,j
, j ∈ Z, |j| ≤

Kn}, where Kn is an integer depending on n, and the associated estimators under the additional
assumption:

∫
x2ψ2(x)dx < Aψ < ∞, where ψ = bf, (b2 + σ2)f or f is the function to estimate.

This is done in Comte et al. (2006b) and does not change the main part of the study. For the sake
of simplicity, we write in the theoretical part of the present study the sums over Z.

3. Estimation of b

3.1. The steps of the estimation
3.1.1. First step: the estimators of ` = bf

The orthogonal projection of ` = bf on Sm, `m, is given by

`m =
∑
j∈Z

am,j(`)ϕm,j with am,j(`) =
∫

R
ϕm,j(x)`(x)dx = 〈ϕm,j , `〉. (5)

For t belonging to a space Sm of the collection (Sm)m∈Mn
, let

γn(t) =
1
n

n∑
i=1

(‖t‖2 − 2Zi+1u
∗
t (Zi)), ut(x) =

1
2π

t∗(−x)
f∗ε (x)

.
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The following sequence of equalities, relying on the Fourier equalities (2), explains the choice of
the contrast γn:

E(Z2u
∗
t (Z1)) = E(b(X1)u∗t (Z1)) = 〈u∗t ∗ fε(−.), bf〉 =

1
2π
〈 t∗

f∗ε (−.)
f∗ε (−.), (bf)∗〉

=
1

2π
〈t∗, (bf)∗〉 = 〈t, bf〉 = E(b(X1)t(X1)) =

∫
t(x)b(x)f(x)dx = 〈t, `〉.

Therefore, we find that E(γn(t)) = ‖t‖2 − 2〈`, t〉 = ‖t − `‖2 − ‖`‖2 is minimal when t = `. Thus,
we define

ˆ̀
m = arg min

t∈Sm
γn(t) (6)

The estimator can also be written

ˆ̀
m =

∑
j∈Z

âm,j(`)ϕm,j , with âm,j(`) =
1
n

n∑
i=1

Zi+1u
∗
ϕm,j (Zi). (7)

Now, to select an adequate value of m, we define ˆ̀
m̂, by setting

m̂ = arg min
m∈Mn

{
γn(ˆ̀

m) + pen(m)
}
,

where the penalty function is given by pen(m) = κE(Z2
2 )Ψ(m) where

Ψ(m) =


∆(m)
n if 0 ≤ δ < 1/3

m[(3δ−1)/2]∧δ∆(m)
n

if δ ≥ 1/3,
and ∆(m) =

1
2π

∫ πm

−πm

dx

|f∗ε (x)|2
, (8)

where x∧y := inf(x, y). In practice E(Z2
2 ) is unknown and is replaced by its empirical version. The

resulting penalty function, p̂en, then becomes random. We note that γn(ˆ̀
m) = −

∑
j∈Z[âm,j(`)]2,

which explains (10) below.

3.1.2. Second step: the estimators of f

The second stage of the estimation procedure is to estimate f . In fact, Comte et al. (2006b, 2007)
explain how to estimate f in an adaptive way and in a mixing context. The estimator of f on Sm
is defined by

f̂m =
∑
j∈Z

âm,j(f)ϕm,j with âm,j(f) =
1
n

n∑
i=1

u∗ϕm,j (Zi). (9)

Then we define f̂m̈,

m̈ = arg min
m∈Mn

−∑
j∈Z

[âm,j(f)]2 + ¨pen(m)

 , (10)

where the penalty function is given by ¨pen(m) = κ̈Ψ(m) with Ψ(m) given by (8). For the properties
of f̂m̈ we refer to Comte et al. (2006b). Up to the multiplicative constants, the control of the mean
square risk of the estimator is the same as the one obtained for ` here.
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3.1.3. Last step: the estimator of b.
We estimate b on a compact set B only and the following additional assumption is required:

A6 (i) ∀x ∈ B, f0 ≤ f(x) ≤ f1 for two positive constants f0 and f1.
(ii) b is bounded on B.

Then we can define:

b̃ = b̂m̂,m̈ =
ˆ̀
m̂

f̂m̈
if ‖ˆ̀m̂/f̂m̈‖ ≤ an, b̃ = b̂m̂,m̈ = 0 else, (11)

where an is a sequence to be specified later.

3.2. Risk bound for ˆ̀
m and ˆ̀

m̂.
We define the following empirical centered process

νn(t) =
1
n

n∑
k=1

(Zk+1u
∗
t (Zk)− 〈t, `〉),

and with (5) and (7), we note that the following equalities hold

‖`− ˆ̀
m‖2 = ‖`− `m‖2 + ‖`m − ˆ̀

m‖2 = ‖`− `m‖2 +
∑
j∈Z

(am,j(`)− âm,j(`))2

= ‖`− `m‖2 +
∑
j∈Z

ν2
n(ϕm,j).

Therefore
E‖`− ˆ̀

m‖2 ≤ ‖`− `m‖2 +
∑
j∈Z

Var[νn(ϕm,j)].

The following decomposition will prove useful: νn(t) = ν
(1)
n (t) + ν

(2)
n (t) + ν

(3)
n (t) with

ν(1)
n (t) =

1
n

n∑
k=1

εk+1u
∗
t (Zk), ν(2)

n (t) =
1
n

n∑
k=1

ξk+1σ(Xk)u∗t (Zk), (12)

ν(3)
n (t) =

1
n

n∑
k=1

(b(Xk)u∗t (Zk)− 〈t, `〉). (13)

Here the terms ν(1)
n and ν

(2)
n can be kept together and benefit from the uncorrelatedness of the

variables involved in the sums. The term ν
(3)
n involves dependent variables. Then we find

Var[νn(ϕm,j)] ≤ 2Var
[
ν(1)
n (ϕm,j) + ν(2)

n (ϕm,j)
]

+ 2Var
[
ν(3)
n (ϕm,j)

]
.

The first variance involves uncorrelated and centered terms and leads to

Var

[
1
n

n∑
i=1

(εi+1 + σ(Xi)ξi+1)u∗ϕm,j (Zi)

]
=

1
n2

n∑
i=1

E[(s2
ε + σ2(Xi))|u∗ϕm,j (Zi)|

2]

so that∑
j∈Z

Var
[
ν(1)
n (ϕm,j) + ν(2)

n (ϕm,j)
]

=
1
n

∑
j∈Z

E[(s2
ε + σ2(X1))|u∗ϕm,j (Z1)|2] =

(s2
ε + E(σ2(X1)))∆(m)

n
.
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We use here the following useful property of our basis (resulting from a Parseval’s formula):

∀x ∈ R,
∑
j

|u∗ϕm,j (x)|2 = ∆(m),

where ∆(m) is defined by (8) and the u∗ϕm,j (x) are just rewritten as Fourier coefficients.
For the second term, we use the standard tools specific to the β-mixing context (namely Vien-

net’s (1997) covariance Inequality) and we can easily prove the following Lemma:

Lemma 3.1. Under Assumptions A1-A3,∑
j∈Z

Var
(
ν(3)
n (ϕm,j)

)
≤ E(b2(X1))

∆(m)
n

+
4Km
n

,

where K =
√

2
∑
k≥0(k + 1)β(k)E(b4(X1)) if E(b4(X1)) <∞ and

∑
k kβ(k) < +∞.

Therefore, the rate of the estimate ˆ̀
m is as follows:

Proposition 3.1. Consider the estimator ˆ̀
m of ` defined by (6) where ` = bf with b and f as

in Model (1). Then under Assumptions A1-A4, if E(b4(X1)) < +∞ and θ > 1 for arithmetical
mixing (see (3)), we have

E(‖`− ˆ̀
m‖2) ≤ ‖`− `m‖2 + 2E(Z2

2 )
∆(m)
n

+ 8K
m

n
.

In addition, assume that ` belongs to a space Ss,a,r(A) defined by (4) and that Assumption A5
is fulfilled. Then the estimate ˆ̀

m̌ with m̌ as in Table 1, has the rates given in Table 1 in terms of
its mean square integrated risk E(‖ˆ̀m − `‖2).

The orders given in Table 1 classically take into account that:

(a) When ` belongs to a space Ss,a,r(A) defined by (4), then the order of the squared bias is

‖`− `m‖2 = (2π)−1

∫
|x|≥πm

|f∗(x)|2dx ≤ Cm−2s exp(−2a(πm)r).

(b) When f∗ε satisfies A5 then the order of the variance term is bounded by:

C∆(m)/n ≤ C ′m2γ+1−δ exp(2µ(πm)δ)/n.

When r > 0, δ > 0 the value of m̌ is not explicitly given. It is obtained as the solution of the
equation

m̌2s+2γ+1−r exp{2µ(πm̌)δ + 2aπrm̌r} = O(n).

For explicit formulae for the rates, see Lacour (2006).
These rates enhance the interest of building an estimator for which the choice of the relevant

model m is automatically performed. This is done with ˆ̀
m̂, and we can prove the following result:

Theorem 3.1. Assume that Assumptions A1-A4 hold, that E(b8(X1)), E(σ8(X1)) and E(ξ8
1)

are finite and that E(ε6
1) < +∞. Assume moreover that the process X is geometrically β-mixing,

(or arithmetically β-mixing with θ > 14) and that the collection Mn is such that for all m ∈Mn,
pen(m) ≤ 1, then

E(‖ˆ̀m̂ − `‖2) ≤ C inf
m∈Mn

(
‖`− `m‖2 + pen(m)

)
+
C ′

n
.
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δ = 0 δ > 0
fε ordinary smooth fε supersmooth

r = 0
` Sobolev(s)

πm̌ = O(n1/(2s+2γ+1))

rate = O(n−2s/(2s+2γ+1))

πm̌ = [ln(n)/(2µ+ 1)]1/δ

rate = O((ln(n))−2s/δ)

r > 0
` C∞

πm̌ = [ln(n)/2a]1/r

rate = O

(
ln(n)(2γ+1)/r

n

) m̌ solution of

m̌2s+2γ+1−r exp{2µ(πm̌)δ + 2aπrm̌r}
= O(n)

Fig. 1. Choice of m̌ and corresponding rates under A1-A5 and if ` belongs to Ss,a,r(A) defined by (4).

The proof of Theorem 3.1 is based on the study of several empirical processes deduced from the
preliminary decomposition of νn given by (12)-(13) and is sketched in Section 6.

Theorem 3.1 shows that the estimator automatically selects the optimal m when δ ≤ 1/3, since
in that case, the penalty has exactly the same order as the variance (namely ∆(m)/n). When
δ > 1/3, a compromise is still performed, but the penalty is slightly greater than the variance. In
an asymptotic setting, this implies a loss in the rate of convergence of the estimator, but this loss
can be shown to be negligible with respect to the rates. For discussions on this point, see Comte
et al. (2006b).

3.3. Risk bounds for b̃
Comte et al. (2006a) that f̂m̈ satisfies the same inequality as ˆ̀

m̂ that follows.

Theorem 3.2. Assume that Assumptions A1-A4 hold. Assume that the process X is geomet-
rically β-mixing, (or arithmetically β-mixing with θ > 3 in (3)) and that the collection Mn is such
that for all m ∈Mn, ¨pen(m) ≤ 1, then

E(‖f̂m̈ − f‖2) ≤ C inf
m∈Mn

(
‖f − fm‖2 + ¨pen(m)

)
+
C ′

n

where fm denotes the orthogonal projection of f on Sm.

Then it is common (see e.g. Lacour (2005) or Comte and Taupin (2007)) to obtain that under
the assumptions of Theorems 3.1 and 3.2, under A5, if f belongs to a space Ss,a,r(A) with s > 1/2
if r = 0 and ` to a space Ss′,a′,r′(A′), if ln(ln(n)) ≤ mn ≤ (n/ ln(n))1/(2γ+1) for f̂m̈, under the
additional assumption A6, and for n great enough, that

E(‖b̃− b‖2B) ≤ C1E(‖f̂m̈ − f‖2) + C2E(‖ˆ̀m̂ − `‖2) +
C3

n

where an = nω with ω > 1/2 and C1, C2, C3 are constants.

4. Estimation of σ2

4.1. Steps of the estimation
We now aim at estimating σ2 and we also follow the strategy described in Section 2.1.
First step. We set ϑ = (b2 + σ2)f and we first estimate ϑ. To this end, we consider the following
contrast:

γ̆n(t) = ‖t‖2 − 2
n

n∑
k=1

(
Z2
k+1 − σ2

ε

)
u∗t (Zk). (14)
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As fε is assumed to be known, then so is the variance s2
ε. Suggestions on how to estimate it can

be drawn from Butucea and Matias (2004). Then we define

ϑ̂m = arg min
t∈Sm

γ̆n(t) and m̆ = arg min
m∈Mn

γ̆n(ϑ̂n) + ˘pen(m) (15)

where ˘pen(m) is a penalty function given by: ˘pen(m) = κ̆E((Z2
2 − s2

ε)
2)Ψ(m), with Ψ(m) given by

(8). Again, the expectation E[(Z2
2 − s2

ε)
2] is replaced by its empirical version in practice.

Second step. As previously, we use as an estimator of f , the estimator f̂m̈ as defined by (9)-(10).
Its risk is controlled by Theorem 3.2.

Third step. We obtain, by defining, similarly to (11),

˜b2 + σ2 =
ϑ̂m̆

f̂m̈
if ‖ϑ̂m̆/f̂m̈‖ ≤ ăn and 0 otherwise,

and ăn is a sequence to be specified in the same way as an for the estimation of b. Clearly, ˜b2 + σ2

is an estimator of b2 + σ2. For the study of steps 2 and 3, see Section 3.3.

Fourth step. The estimator of σ2 must be built by setting

σ̃2 = ˜b2 + σ2 − (b̃)2.

Clearly, as ‖σ̃2−σ2‖2 ≤ 2‖ ˜b2 + σ2− (b2 +σ2)‖2 + 2‖b+ b̃‖2‖b− b̃‖2, the risk of the final estimator
is the sum of the risks of the estimators of b2 + σ2 and b, provided that b is bounded and b̃ is
bounded with high probability. The latter step is studied from an empirical point of view only.

4.2. Risk bounds for ϑ̂m and ϑ̂m̆.
It is not difficult to check that E(γ̆n(t)) = ‖t‖2 − 2〈ϑ, t〉 which justifies the choice of γ̆n given in
(14). We can also easily obtain the decomposition γ̆n(t)− γ̆n(s) = ‖t−ϑ‖2−‖s−ϑ‖2− 2ν̆n(t− s)
where

ν̆n(t) =
1
n

n∑
k=1

[
(Z2

k+1 − s2
ε)u
∗
t (Zk)− 〈t, ϑ〉

]
.

As for b previously, we can write that

‖ϑ̂m − ϑ‖2 = ‖ϑm − ϑ‖2 +
∑
j∈Z

ν̆2
n(ϕm,j).

With the same tools as for the study of `, using a relevant decomposition of the empirical process
ν̆n, we prove (see Section 7) that:

Proposition 4.1. Consider the estimator ϑ̂m of ϑ defined by (15) where ϑ = (b2 + σ2)f with
b, σ and f as in Model (1). Then under Assumptions A1-A4, and if ξ2, ε1, b

2(X1) and σ2(X1)
admit moments of order 4, then

E(‖ϑ− ϑ̂m‖22) ≤ ‖ϑ− ϑm‖2 + 4E[(Z2
2 − s2

ε)
2]

∆(m)
n

+ K̆
m

n

where K̆ = 16
√

2
∑
k≥0(k + 1)β(k)E((b2(X1) + σ2(X1))4) if

∑
k kβ(k) < +∞.
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Model b01 Model b02

Laplace error Normal error Laplace error Normal error
Method n = 400 800 400 800 400 800 400 800

Oracle Kernel 2.92 2.30 6.72 5.86 3.07 2.22 5.15 3.92
Projection 4.95 2.76 6.42 4.72 3.63 2.53 5.06 2.59

Fig. 2. Average Squared Errors (ASE) for estimating b01 (ASE (×10−6)) and b02 (ASE (×10−2)).

It appears from the details of the above study that the empirical processes involved in the decom-
position of ν̆n are of the same type as the processes studied for the estimation of `. Therefore, we
give the risk bound for ϑ̂m̆ but we omit the proof.

Theorem 4.1. Assume that Assumptions A1-A4 hold, that E(bp(X1)), E(σp(X1)) and E(ξp1)
are finite for a p ≥ 16 and that E(ε12

1 ) < +∞. Assume that the process X is geometrically β-mixing
and that the collection Mn is such that for all m ∈Mn, ˘pen(m) ≤ 1, then

E(‖ϑ̂m̆ − ϑ‖2) ≤ C inf
m∈Mn

(
‖ϑ− ϑm‖2 + ˘pen(m)

)
+
C ′

n
.

5. Simulation results

For the simulations, we adapt the deconvolution algorithm described in Comte et al. (2006a,2007)
to the new context here. The penalties are chosen as:

1
n

(
1
n

n∑
i=1

W 2
i

)
πm+

ln3(πm)
1 + s2

ε

+ (πm)3s2
ε +

3
5

(πm)5s4
ε if ε1 Laplace.(

πm+
ln3(πm)
1 + s2

ε

+ (πm)3s2
ε

)∫ 1

0

e(πmu)2s2εdu if ε1 Gaussian.

where Wi ≡ 1 for the estimation of f , Wi = Zi for the estimation of b and Wi = Z2
i − s2

ε for the
estimation of b2 + σ2. In both cases, a (negligible) logarithmic term (namely ln3(πm)/(1 + s2

ε)) is
added as a standard correction for small dimensions. The constant κ is chosen equal to π in the
Gaussian case, the term (πm)3s2

ε corresponds to the loss in the rate when δ = 2. In the Laplace
case, the constant κ is term by term modified when computing ∆(m). Indeed in that case, we
find ∆(m) = (1/π)(πm + (πm)3s2

ε/3 + (πm)5s4
ε/20). We select m among 26 values ranging from

10 ln(n)/(πn) to 10. We refer to Comte et al. (2007) for stability properties of the estimation
algorithm.

5.1. Two examples in a regression context
First we compare our method with the kernel strategy described by Fan and Truong (1993).
The model here is Yi = b(Xi) + ξi, Zi = Xi + εi, with observations ((Y1, Z1), . . . , (Yn, Zn)), and
unobserved i.i.d Xi’s. Two regression functions are considered:

b01(x) = x3
+(1− x)3

+ and b02(x) = 1 + 4x.

The variance of ε, s2
ε is adjusted in all cases such that Var(X)/(s2

ε + Var(X)) = 0.70. The Xi’s are
N (0.5, 0.252) and the ξi’s are N (0, 0.00152) with b01 and N (0, 0.252) with b02. The convolution
noise ε is such that either

f∗ε (x) = exp(−1
2
s2
εx

2) or f∗ε (x) =
1

1 + 1
2s

2
εx

2
, (16)
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corresponding to a Gaussian super-smooth case or a Laplace ordinary smooth case.
For each simulation, we compute the average squared error (ASE) at 101 grid points from 0.1

to 0.9 of our adaptive estimator and average these ASEs over 100 replications. We compare it with
the “oracle” computed by Fan and Truong (1993): this is not an estimator but an oracle because
they average ASEs obtained with the best bandwidth in terms of the (unknown in practice) ASE,
for each replication: they choose a posteriori the bandwidth that minimizes the ASE. We report
Fan and Truong’s kernel results and ours, in Table fig.2. We mention that if we had also computed
oracles, we would have systematically had better results than theirs. With our true adaptive
estimator, our results remain better than their oracles in the Gaussian case. They are slightly
deteriorated in the Laplace case, but they keep the same order as Fan and Truong (1993)’s oracles.
Note that we do not study the case n = 200 because it is too small for our method to work in a
satisfactory way.

5.2. Three examples in an heteroscedastic autoregressive context
Comte and Rozenholc (2002) provides a simulation study of the direct model Xi+1 = b(Xi) +
σ(Xi)ξi+1 when the Xi’s are observed. The strategy consists in a penalized mean-square contrast
minimization which can not be applied to the present context. But we can keep some couples of
functions (b, σ) and see how the deconvolution method behaves with respect to the estimation of
these functions. More precisely, we borrow the following couples from Comte and Rozenholc (2002): b1(x) = 0.25 sin(2πx+ π/3) σ1(x) = s1(0.31 + 0.7 exp(−5x2)), s1 = 0.4

b2(x) = −0.25(x+ 2 ∗ exp(−16x2)) σ2(x) = s2(0.2 + 0.4 ∗ exp(−2x2)), s2 = 0.5
b3(x) = 1/(1 + e−x) σ3(x) = s3(φ(x+ 1.2) + 1.5φ(x− 1.2)), s3 = 0.32,

(17)

where φ is the GaussianN (0, 1) probability distribution function. Moreover, we choose ξ ∼ N (0, 1),
ε is either Laplace or Gaussian as given by (16) with sε = 0.1.

Figures 4-5-6 illustrate our results in the three cases of couples (bi, σ2
i ) given in (17). For the

estimation of f , the density of the Xi’s, the true function is unknown, and the estimated function
only is plotted. We can see that b and b2 + σ2 are well estimated by the ratio strategy. The
extraction of σ2 sometimes suffers from scale problems (if σ2 is much smaller that b2 or if both
are very small). The relative order of both variance of ε and quantity si in the definition of σi,
i = 1, 2, 3 seem to play an important role in the quality of the estimation.

Figures 4-5-6 (top right and bottom left) also plot the data sets generated, not only the Zi’s
used for the estimation, but also the Xi’s, to show the influence of the noise ε: a line joins Xi to
Zi, for each i, with a + for the true observation Zi.

We also performed a Monte Carlo study which is reported in Table fig.3. We show that there is
little difference between Laplace and Gaussian εi’s, in spite of the difference between the theoretical
rates, and that increasing the sample size leads to noticeable improvements of the results.

6. Proofs

6.1. Proof of Lemma 3.1

Var
(
ν(3)
n (ϕm,j)

)
=

1
n2

n∑
k=1

Var
(
b(Xk)u∗ϕm,j (Zk)

)
+

1
n2

∑
1≤k 6=l≤n

cov(b(Xk)u∗ϕm,j (Zk), b(Xl)u∗ϕm,j (Zl)).

Then

E(b(Xk)u∗ϕm,j (Zk)) =
1

2π

∫
E(b(X1)eixX1)ϕ∗m,j(−x)dx = 〈bf, ϕm,j〉 = E(b(X1)ϕm,j(X1))
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Laplace ε Gaussian ε
n = 400 800 1600 400 800 1600
b1 0.7989 0.3341 0.1677 0.8278 0.4993 0.2247

(0.5976) (0.1966) (0.0773) (0.7159) (0.3558) (0.1352)

b21 + σ2
1 0.1515 0.1011 0.0529 0.1810 0.1117 0.0637

(0.1033) (0.0643) (0.0278) (0.1153) (0.0580) (0.0300)

σ2
1 0.0946 0.0823 0.0534 0.1112 0.0880 0.0620

(0.0426) (0.0330) (0.0242) (0.0471) (0.0345) (0.0215)

b2 4.8038 3.8121 1.7513 4.8138 4.2150 1.6728
(2.2205) (2.7124) (1.7207) (2.2205) (2.7124) (1.7207)

b22 + σ2
2 5.4090 2.7263 1.7643 4.0527 2.6609 1.5938

(6.8739) (2.3491) (1.8050) (4.0048) (2.3839) (1.1365)

σ2
2 4.8544 2.6762 1.8548 3.5284 2.8233 1.6558

(5.2914) (1.7226) (1.5342) (4.0048) (2.3839) (1.1365)
b3 0.0787 0.0389 0.0291 0.0973 0.0704 0.0313

(0.1029) (0.0657) (0.0345) (0.1402) (0.1439) (0.0492)

b23 + σ2
3 0.1532 0.0702 0.0604 0.1789 0.1064 0.0608

(0.1613) (0.0798) (0.0588) (0.1818) (0.1999) (0.0717)

σ2
3 0.0276 0.0145 0.0132 0.0516 0.0206 0.0135

(0.0528) (0.0260) (0.0169) (0.1117) (0.0337) (0.0217)

Fig. 3. ASE×100 (with standard deviation ×100 in parenthesis) for the estimation of bi and σ2
i , i = 1, 2, 3

given in (17), for 100 replications of the estimation procedure.
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density of the Xi’s, top right: true and estimated b1 with data (Xi, Zi), bottom left: true and estimated b21 +σ2
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with data (X2
i , Z
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i − s2ε), bottom right: true and estimated σ2
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3 .
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and note that, for k 6= l,

E(b(Xk)u∗ϕm,j (Zk)b(Xl)ū∗ϕm,j (Zl)) =
1

4π2

∫∫
E(b(Xk)b(Xl)eixXk−iyXl)ϕ∗m,j(−x)ϕ∗m,j(y)dxdy

= E[b(Xk)b(Xl)ϕm,j(Xk)ϕm,j(Xl)].

Therefore,

Var

(
1
n

n∑
k=1

b(Xk)u∗ϕm,j (Zk)

)
≤ 1
n

Var(b(X1)u∗ϕm,j (Z1)) + Var

(
1
n

n∑
k=1

b(Xk)ϕm,j(Xk)

)
.

The last term requires a covariance inequality for mixing variables (Delyon (1990), Viennet (1997),
Theorem 9.1 in the appendix) and uses the fact that the Xi’s are β-mixing with coefficients β(k).

∑
j∈Z

Var

[
1
n

n∑
i=1

b(Xi)ϕm,j(Xi)

]
≤
∑
j∈Z

4
n

∫
β(x)b2(x)|ϕm,j(x)|2f(x)dx ≤ 4m

n

∫
β(x)b2(x)f(x)dx

where β is a nonnegative function such that E(βp(X)) ≤ p
∑
k≥0(k+ 1)p−1β(k) and by using that

‖
∑
j |ϕm,j |2(.)‖∞ = m. Therefore if E(b4(X1)) <∞ and θ > 1, then

∑
j∈Z

Var

[
1
n

n∑
i=1

b(Xi)ϕm,j(Xi)

]
≤

4m
√

2
∑
k≥0(k + 1)β(k)E(b4(X1))

n
.

Moreover
∑
j∈Z Var

(
b(X1)u∗ϕm,j (Z1)

)
≤ E

(
b2(X1)

∑
j∈Z(u∗ϕm,j (Z1))2

)
so that

∑
j∈Z

1
n

Var
(
b(X1)u∗ϕm,j (Z1)

)
≤ E(b2(X1))∆(m)

n
,

which gives the result. 2

6.2. Proof of Theorem 3.1.
The proof could be sketched as follows. Let us define form,m′ ∈Mn, Bm(0, 1) = {t ∈ Sm, ‖t‖ = 1}
and Bm,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖ = 1}. Under the definition of m̂, ∀m ∈ Mn, γn(ˆ̀

m̂) +
pen(m̂) ≤ γn(`m)+pen(m). For all functions s and t, γn(t)−γn(s) = ‖t−`‖2−‖s−`‖2−2νn(t−s),
and

2νn(ˆ̀
m̂ − `m) ≤ 1

4
‖ˆ̀m̂ − `m‖2 + 4 sup

t∈Bm,m̂(0,1)

ν2
n(t).

Thus, we obtain, as ‖ˆ̀m̂ − `m‖2 ≤ 2‖ˆ̀m̂ − `‖2 + 2‖`m − `‖2 that

1
2
‖ˆ̀m̂ − `‖2 ≤

3
2
‖`m − `‖2 + pen(m) + 4 sup

t∈Bm,m̂(0,1)

ν2
n(t)− pen(m̂). (18)

Then we need to find a function p(m,m′) such that

E

(
sup

t∈Bm,m̂(0,1)

ν2
n(t)− p(m, m̂)

)
+

≤ C

n
(19)
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which in turn will fix the penalty function through the requirement: ∀m,m′ ∈Mn,

4p(m,m′) ≤ pen(m) + pen(m′). (20)

Gathering (18), (19) and (20) will lead to, ∀m ∈Mn,

1
2

E
(
‖ˆ̀m̂ − `‖2

)
≤ 3

2
‖`m − `‖2 + 2pen(m) +

4C
n

which is the result.
Now, if νn is split into several terms, deduced from the first decomposition given by (12)-(13),

say νn(t) =
∑3
i=1

∑pi
j=1 ν

(i,j)
n (t) where pi ≤ 3, then, up to some multiplicative constants, inequality

(19) will follow from inequalities

E

(
sup

t∈Bm,m̂(0,1)

[ν(i,j)
n (t)]2 − pi,j(m, m̂)

)
+

≤ Ci,j
n
,

with C = 9
∑
i,j Ci,j and p(m,m′) = 9

∑
i,j pi,j(m,m

′). The study of the ν(i,j)
n (t) is explained

below.
First we split ν(1)

n in two parts, so that both expressions involve independent variables, condi-
tionally to (X): ν(1)

n = ν
(1,odd)
n + ν

(1,even)
n where

ν(1,even)
n (t) =

1
n

∑
1≤2k≤n

ε2k+1u
∗
t (Z2k), ν(1,odd)

n (t) =
1
n

∑
1≤2k+1≤n

ε2k+2u
∗
t (Z2k+1).

Now, we shall study ν(1,even)
n only since both terms lead to the same type of result. As Talagrand’s

Inequality requires the random variables involved to be bounded, we have an additional step that
allows to obtain the result under a moment condition on the εi’s: ν

(1,even)
n = ν

(1,1)
n + ν

(1,2)
n + ν

(1,3)
n

with

ν(1,1)
n (t) =

1
n

∑
1≤2k≤n

[
ε2k+11I|ε2k+1|≤n1/4u∗t (Z2k)− EX(ε2k+11I|ε2k+1|≤n1/4u∗t (Z2k))

]
,

ν(1,2)
n (t) =

1
n

∑
1≤2k≤n

E(ε2k+11I|ε2k+1|≤n1/4) [t(X2k)− E(t(X2k))]

and
ν(1,3)
n (t) =

1
n

∑
1≤2k≤n

[
ε2k+11I|ε2k+1|>n1/4u∗t (Z2k)− E(ε2k+11I|ε2k+1|>n1/4u∗t (Z2k))

]
,

where EX denotes the conditional expectation given (Xk)1≤k≤n+1. It is worth noticing that ν(1,2)
n

vanishes if the ε’s are symmetric and ν
(1,3)
n (t) is negligible under adequate moment conditions on

the ε’s.
The following lemmas are proved below:

Lemma 6.1.

E

(
sup

t∈Bm,m̂(0,1)

[ν(1,1)
n (t)]2 − p1,1(m, m̂)

)
+

≤ C

n
,

where p1,1(m,m′) = KE(ε2
1)Ψ(m ∨m′) where K is a numerical constant and Ψ(m) is defined by

(8).



16 F. Comte, C. Lacour, Y. Rozenholc

Lemma 6.2. If the process (Xk) is geometrically β-mixing (or arithmetically with θ > 3), then

E

(
sup

t∈Bm,m̂(0,1)

[ν(1,2)
n (t)]2 −KE(|ε1|)

∑
k

β(k)
m+ m̂

n

)
+

≤ C

n
.

Lemma 6.3. If E(ε6
1) < +∞, and mn is the largest value of m such that ∆(mn)/n ≤ 1, then,

E

(
sup

t∈Bm,m̂(0,1)

[ν(1,3)
n (t)]2

)
≤ E

(
sup

t∈Bmn (0,1)

(ν(1,3)
n (t))2

)
≤ 2E(ε6

1)
n

.

For the study of ν(2)
n (t), a result is given, whose proof is detailed in Section 8:

Lemma 6.4. Let τn(t) = ν
(2)
n (t) = (1/n)

∑n
k=1 ξk+1σ(Xk)u∗t (Zk). Under the assumptions of

Theorem 3.1,

E

(
sup

t∈Bm,m̂(0,1)

[τn(t)]2 − pτ (m, m̂)

)
+

≤ C

n
,

where pτ (m,m′) = κE(σ2(X1))Ψ(m ∨m′).

For ν(3)
n (t) we write ν(3)

n (t) = ν
(3,1)
n (t) + ν

(3,2)
n (t) with

ν(3,1)
n (t) =

1
n

n∑
k=1

[b(Xk)u∗t (Zk)− b(Xk)t(Xk))], ν(3,2)
n (t) =

1
n

n∑
k=1

[b(Xk)t(Xk)− 〈t, `〉],

where b(Xk)t(Xk) = E(X)[b(Xk)u∗t (Zk)]. For ν(3,1)
n (t) we can apply Talagrand’s Inequality condi-

tionally to (X), for ν(3,2)
n (t), we can use approximation techniques. More precisely, using the same

techniques as previously, we get

Lemma 6.5. If E(b8(X1)) < +∞, and (Xi)i∈N is arithmetically β-mixing with θ > 14, then

E

(
sup

t∈Bm,m̂(0,1)

[ν(3,1)
n (t)]2 − p3,1(m, m̂)

)
+

≤ C

n
,

where p3,1(m,m′) = KE(b2(X1))Ψ(m ∨m′), and

E

(
sup

t∈Bm,m̂(0,1)

[ν(3,2)
n (t)]2 −K ′(E(b4(X1))

∑
k

(k + 1)β(k))1/2m+ m̂

n

)
+

≤ C

n
,

where κ and κ′ are numerical constants.

The proof of the result concerning ν(3,1)
n follows the same line as the proof of Lemma 6.4, which

is detailed in section 8 and is therefore omitted here. For ν(3,2)
n , the bound can be obtained directly

by applying Talagrand’s inequality (see Theorem 9.2) to this process, if b is bounded. As this is not
assumed, we write b = b1+b2 with b1(x) = b(x)1I|b(x)|≤n1/4 and b2(x) = b(x)1I|b(x)|>n1/4 . This allows
to split the process in two parts and consequently to obtain the result under E(|b(X1)|8) < +∞ and
mn ≤

√
n, where mn is the largest over the m ∈Mn (a condition which is fulfilled in our problem).
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Proof of Lemma 6.1.
We apply Lemma 9.2 to process ν(1,1)

n (t) conditionally to the sequence (Xk)1≤k≤n. Given the Xi’s,
the variables (Z2k, ε2k+1)k≥1 are independent and we have, for m? = m ∨m′,

EX

(
sup

t∈Bm,m′ (0,1)

(ν(1,1)
n (t))2

)

≤
∑
j∈Z

EX


 1
n

∑
1≤2k≤n

ε2k+11I|ε2k+1|≤n1/4u∗ϕm?,j (Z2k)− EX(ε2k+11I|ε2k+1|≤n1/4u∗ϕm?,j (Z2k))

2


≤
∑
j∈Z

1
n2

∑
1≤2k≤n

VarX
(
ε2k+11I|ε2k+1|≤n1/4u∗ϕm?,j (Z2k)

)
≤

∑
j∈Z

1
n2

∑
1≤2k≤n

EX
[(
ε2k+11I|ε2k+1|≤n1/4u∗ϕm?,j (Z2k)

)2
]

=
1
n2

∑
1≤2k≤n

EX

ε2
2k+11I|ε2k+1|≤n1/4

∑
j∈Z

(u∗ϕm?,j (Z2k))2

 ≤ E(ε2
1)

∆(m?)
n

:= H2,

as ‖
∑
j |u∗ϕm,j (.)|

2‖∞ ≤ ∆(m) by using Parseval’s formula.

Next supx,y |y1|y|≤n1/4u∗t (x)| ≤ n1/4‖u∗t (.)‖∞ ≤ n1/4
√

∆(m∗) := M1. Lastly, following the
same method as described in Comte et al. (2006b), Lemma 4, we get

sup
t∈Bm,m′ (0,1)

1
n

∑
k

VarX(ε2k+11I|ε2k+1|≤n1/4u∗t (Z2k))

≤ sup
t∈Bm,m′ (0,1)

1
n

∑
k

E(ε2
2k+1)EX [(u∗t (Z2k))2] ≤ E(ε2

1)
√

∆2(m?)/(2π), where

∆2(m) = m2

∫∫ ∣∣∣∣ ϕ∗(x)ϕ∗(y)
f∗ε (mx)f∗ε (my)

f∗ε (m(x− y))
∣∣∣∣2 dxdy. (21)

Then the usual bounds for ∆2 hold, namely,
√

∆2(m?) ≤ ∆(m?) if δ > 1 and if δ ≤ 1,√
∆2(m?)/2π ≤ κ∆(m?)/(m?)(1−δ)/2. This gives v = c∆(m∗)(m?)−(1−δ)+/2.

Given that the orders are the same as in Comte et al. (2006b) for v and H2 and inserting the
slight difference on M1, it can easily be checked that the conclusion still holds and therefore the
result of Lemma 6.1 follows. 2

Proof of Lemma 6.2.
The result given in Lemma 6.2 is a standard result of density estimation for mixing variables. We
refer the reader to Tribouley and Viennet (1998) or Comte and Merlevède (2002), p.217.2
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Proof of Lemma 6.3. Let ek = εk1I|εk|>n1/4 .

E

(
sup

t∈Bmn (0,1)

(ν(1,3)
n (t))2

)
≤
∑
j∈Z

Var

(
1
n

∑
k

e2k+1u
∗
ϕmn,j

(Z2k)

)

=
1
n2

∑
j∈Z

∑
k

Var
(
e2k+1u

∗
ϕmn,j

(Z2k)
)

+
∑
k 6=l

cov(e2k+1u
∗
ϕmn,j

(Z2k), e2l+1u
∗
ϕmn,j

(Z2l))


≤ E(e2

3)∆(mn)
n

+
1
n2

∑
j∈Z

E(e3)2
∑
k 6=l

cov(ϕmn,j(X2k), ϕmn,j(X2l))

≤ E(e2
3)∆(mn)
n

+
1
n2

∑
j∈Z

E(e3)2Var

(∑
k

ϕmn,j(X2k)

)

≤ E(e2
3)
(

∆(mn)
n

+
mn

∑
k βk

n

)
≤ 2∆(mn)

n
E
(
ε2

11I|ε1|≥n1/4

)
≤ 2E

(
ε6

1/n
)
.2

7. Proof of Proposition 4.1.

We bound the expectations of the empirical processes involved in order to obtain the bound of∑
j∈Z E(ν̆n(ϕm,j)), using the decomposition ν̆n =

∑4
i=1 ν̆

(i)
n with

ν̆(1)
n (t) = (1/n)

n∑
k=1

[
(b2(Xk) + σ2(Xk))u∗t (Zk)− 〈t, ϑ〉

]
,

ν̆
(2)
n (t) = (1/n)

∑n
k=1(ξ2

k+1 − 1)σ2(Xk)u∗t (Zk), ν̆
(3)
n (t) = 1

n

∑n
k=1(ε2

k+1 − s2
ε)u
∗
t (Zk), and ν̆

(4)
n (t) =

(2/n)
∑n
k=1[εk+1ξk+1σ(Xk) + b(Xk)εk+1 + σ(Xk)b(Xk)ξk+1]u∗t (Zk). But it is clear that ν̆(1)

n is the
same process as ν(3)

n with b(Xk) replaced by (b2 + σ2)(Xk), that ν̆(2)
n is of the same type as ν(2)

n

with σ(Xk) replaced by σ2(Xk) and ξk+1 by ξ2
k+1 − 1. Next, ν̆(3)

n corresponds to ν
(1)
n with εk+1

replaced by ε2
k+1 − s2

ε. Lastly∑
j∈Z

E[(ν̆(4)
n (ϕm,j))2] =

4
n

∑
j∈Z

E[(ε2ξ2σ(X1) + b(X1)ε2 + (σb)(X1)ξ2)2(u∗ϕm,j (Zk))2]

≤ 4∆(m)
n

[s2
εE(σ2(X1)) + E(b2(X1)(s2

ε + σ2(X1)))].

The last step is to gather the terms.2

8. Proof of Lemma 6.4

If t = t1 + t2 with t1 in Sm and t2 in Sm′ , then t is such that t∗ has its support included in
[−πmax(m,m′), πmax(m,m′)] and therefore t belongs to Sm? where m? = max(m,m′). We recall
that Bm,m′(0, 1) = {t ∈ Sm? / ‖t‖ = 1}. Denote by

H2
τ (m,m′) = (n−1

n∑
i=1

ξ2
i+1σ

2(Xi))∆(m?)/n, (22)

and let σ2
τ = E(ξ2

2)E(σ2(X1)) = E(σ2(X1)). We have

H2
τ (m,m′) = (n−1

n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ )∆(m?)/n+ σ2

τ∆(m?)/n,
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which is bounded by Hτ,1(m,m′) + Hτ,2(m,m′) where

Hτ,1(m,m′) = (n−1
n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ )1I{n−1|

∑n
i=1 ξ

2
i+1σ

2(Xi)−σ2
τ |>σ2

τ/2}
∆(m?)
n

and Hτ,2(m,m′) = 3σ2
τ∆(m?)/(2n). We infer that τn(t) = τ

(1)
n (t) + τ

(2)
n (t) with

τ (1)
n (t) =

1
n

n∑
k=1

ξk+1σ(Xk) [u∗t (Zk)− t(Xk)] , τ (2)
n (t) =

1
n

n∑
k=1

ξk+1σ(Xk)t(Xk),

and

E[ sup
t∈Bm,m′ (0,1)

|τn(t)|2 − pτ (m,m′)]+

≤ 2E[ sup
t∈Bm,m′ (0,1)

|τ (1)
n (t)|2 − 2(1 + 2ε2(m,m′))H2

τ (m,m′)]+

+2E[ sup
t∈Bm,m′ (0,1)

|τ (2)
n (t)|2 − 6p2(m,m′)]+

+E[4(1 + 2ε2(m,m′))H2
τ (m,m′) + 12p2(m,m′)− pτ (m,m′)]+,

where ε(m,m′) is specified later and

p2(m,m′) = E(σ2(X1))
m?

n
. (23)

Clearly, p2(m,m′) is negligible with respect to pτ (m,m′), so that for simplicity we consider that
(12p2(m,m′)− pτ (m,m′)/2)+ ≤ C/n.

E[4(1 + 2ε2(m,m′))H2
τ (m,m′) + 12p2(m,m′)− pτ (m,m′)]+

≤ 4(1 + 2ε2(m,m′))E|Hτ,1(m,m′)|+ E[4(1 + 2ε2(m,m′))Hτ,2(m,m′)− pτ (m,m′)/2]+. (24)

Since we only consider values of m such that the penalty are bounded by some constant K, we
obtain that for some p ≥ 2, E|Hτ,1(m,m′)| is bounded by

CE

[
| 1
n

n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ |1I{n−1|

∑n
i=1(ξ2i+1σ

2(Xi)−σ2
τ )|>σ2

τ/2}

]

≤ C2p−1E

[
|n−1

n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ |p
]
/σ2(p−1)

τ .

Moreover, we shall see below that ε(m,m′) is constant (if δ = 0 or 0 < δ < 1/3) or at most of
order (ln(n))δ (if δ > 1/3). According to Rosenthal’s inequality (see Rosenthal (1970)) generalized
to the mixing case (see Doukhan (1994) and Inequality (27) recalled in Lemma 9.1), we find that,

E|n−1
n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ |p ≤ C ′(p, ξ, σ(X))

(
n1−p + n−p/2

)
.

Now, Assumption A1(i)-A5 implies that γ > 1/2, therefore |Mn| ≤
√
n if δ = 0 and has logarith-

mic order if δ > 0 and thus, choosing p = 3 leads to
∑
m′∈Mn

E|(1 + 2ε2(m,m′))Hτ,1(m,m′)| ≤
C(ξ, σ(X))/n, where C(ξ, σ(X)) is a constant depending on the moments of ξ1 and σ(X1). In
particular this requires that ξ admit a moment of order 8.
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The last term of the inequality (24) vanishes as soon as

pτ (m,m′) = 8(1 + 2ε2(m,m′))Hτ,2(m,m′) = 12(1 + 2ε2(m,m′))E(σ2(X1))∆(m?)/n.

For this choice of pτ (m,m′), we obtain that

E[ sup
t∈Bm,m̂(0,1)

|τn(t)|2 − pτ (m, m̂)]+

≤ 2
∑

m′∈Mn

E[ sup
t∈Bm,m′ (0,1)

(n−1
n∑
i=1

ξiσ(Xi)(u∗t (Zi)− t(Xi)))2− 2(1 + 2ε2(m,m′))H2
τ (m,m′)]+

+2
∑

m′∈Mn

E[ sup
t∈Bm,m′ (0,1)

|τ (2)
n (t)|2 − 6p2(m,m′)]+ +

C

n
.

Then we apply the following Lemma.

Lemma 8.1. Under the assumptions on the model, if E|ξ1|8 <∞ and E(σ8(X1)), then for some
given ε > 0:

∑
m′∈Mn

E

 sup
t∈Bm,m′ (0,1)

(
1
n

n∑
i=1

ξi+1σ(Xi)(u∗t (Zi)− t(Xi))

)2

− 2(1 + 2ε2)H2
τ (m,m′)


+

≤ K1

{ ∑
m′∈Mn

[
σ2
τλ2Γ2(m?)

n
exp

(
−K2ε

2 ∆(m?)
λ2Γ2(m?)

)]
+
(

1 +
ln4(n)√

n

)
1
n

}
,

where λ2 is a constant, Γ2(m) is defined by

Γ2(m) = (m)2γ+min[(1/2−δ/2),(1−δ)] exp{2µ(πm)δ} (25)

and K1 and K2 are constants depending on the moments of ξ and σ(X).

Moreover, it also follows from Baraud et al. (2001) and Comte and Rozenholc (2002), that the
process τ (2)

n is a standard process of the auto-regressive context and satisfies, for p2(m,m′) defined
by (23),

2
∑

m′∈Mn

E[ sup
t∈Bm,m′ (0,1)

|τ (2)
n (t)|2 − 6p2(m,m′)]+ ≤

c

n
.

We denote by

A(m) =
K1σ

2
τ

n
λ2Γ2(m) exp

(
−K2ε

2 ∆(m)
λ2Γ2(m)

)
=
K1σ

2
τλ2Γ2(m)
n

exp
(
−κ2ε

2m(1/2−δ/2)+
)
.

The study of A(m?) is standard in deconvolution (see Comte et al. (2006b)) and leads to choose
ε2(m,m′) as a constant if δ ≤ 1/3 and of order mδ−(1/2−δ/2)+ if δ > 1/3, to ensure that∑
m′∈Mn

A(m?) is less than C/n.
With pτ (m,m′) given in Lemma 6.4, by gathering all terms we find the result. 2

Proof of Lemma 8.1.
We work conditionally to the (ξi, Xi)’s and EX,ξ and PX,ξ denote the conditional expectations and
probability for fixed ξ1, . . . , ξn, ξn+1, X1, . . . , Xn.

We apply Lemma 9.2 with ft(ξi, Xi, Zi) = ξi+1σ(Xi)u∗t (Zi), conditionally to the ξi’s and Xi’s
to the random variables (ξ2, X1, Z1), . . . , (ξn+1, Xn, Zn) which are independent but non identically
distributed since the ξi’s and the X ′is are fixed constants.
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Straightforward calculations give that for Hτ (m,m′) defined in (22) we have

E2
X,ξ[ sup

t∈Bm,m′ (0,1)

n−1
n∑
l=1

ξl+1σ(Xl)(u∗t (Zl)− t(Xl))] ≤ H2
τ (m,m′).

Let P (l)
j,k(m) = EX,ξ[u∗ϕm,j (Zl)u

∗
ϕm,k

(−Zl)]. Write

sup
t∈Bm,m′ (0,1)

1
n

n∑
l=1

VarX,ξ(ξl+1σ(Xl)u∗t (Zl)) ≤ 1
n

n∑
l=1

ξ2
l+1σ

2(Xl)

∑
j,k∈Z

|P (l)
j,k(m?)|2

1/2

.

We argue as in Comte et al. (2006b). Let recall that ∆2(m) is defined by (21). We have ∆2(m) ≤
λ2

2Γ2
2(m), with Γ2 defined by (25) and λ2 = λ2(γ,A0, δ, µ, ‖fε‖). Now, write P (l)

j,k as

P
(l)
j,k(m) =

m

4π2

∫∫
e−ixj−iykeim(x−y)Xlϕ∗(−x)ϕ∗(−y)

f∗ε (mx)f∗ε (my)
f∗ε (m(x− y))dxdy.

By applying Parseval’s formula we get that
∑
j,k |P

(l)
j,k(m)|2 equals ∆2(m). We now write that

supt∈Bm,m′ (0,1)(n−1
∑n
i=1 VarX,ξ(ξi+1σ(Xi)u∗t (Zi))) ≤ (n−1

∑n
i=1 ξ

2
i+1σ

2(Xi))λ2Γ2(m?),
and thus we take vτ (m,m′) = (n−1

∑n
i=1 ξ

2
i+1σ

2(Xi))λ2Γ2(m?). Lastly, since supt∈Bm,m′ (0,1) ‖ft‖∞ ≤
2 max1≤i≤n |ξi+1σ(Xi)|

√
∆(m?), we take M1,τ (m,m′) = 2 max1≤i≤n |ξi+1σ(Xi)|

√
∆(m?). By ap-

plying Lemma 9.2, we get for some constants κ1, κ2, κ3

EX,ξ[ sup
t∈Bm,m′ (0,1)

ν2
n,1(t)− 2(1 + 2ε2)H2

τ ]+

≤ K1

[
λ2Γ2(m?)

n2
(
n∑
i=1

ξ2
i+1σ

2(Xi)) exp
{
−K2ε

2 ∆(m?)
λ2Γ2(m∗)

}

+
∆(m?)
n2

( max
1≤i≤n

ξ2
i+1σ

2(Xi)) exp

−K3εC(ε2)

√∑n
i=1 ξ

2
i+1σ

2(Xi)

maxi |ξi+1σ(Xi)|




To relax the conditioning, it suffices to integrate with respect to the law of the (ξi+1, Xi)’s the
above expression. The first term in the bound simply becomes:

σ2
τλ2Γ2(m?) exp[−κ2ε∆(m?)/(λ2Γ2(m?))]/n.

The second term is bounded by

∆(m?)
n2

E

(max |ξi+1σ(Xi)|2) exp

−κ3εC(ε2)

√∑n
i=1 ξ

2
i+1σ

2(Xi)

max1≤i≤n |ξi+1σ(Xi)|

 . (26)

Since we only consider integers m such that the penalty term is bounded, we have ∆(m)/n ≤ K
and the sum of the above terms for m′ ∈Mn and |Mn| ≤

√
n is less than

K√
n

E

( max
1≤i≤n

ξ2
i+1σ

2(Xi)
)

exp

−κ3εC(ε2)

√∑n
i=1 ξ

2
i+1σ

2(Xi)

max1≤i≤n |ξi+1σ(Xi)|

 .
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We need to study when such a term is less than c/n for some constant c. We bound maxi |ξi+1σ(Xi)|
bymξ,σ on the set {maxi |ξi+1σ(Xi)| ≤ mξ,σ} and the exponential by 1 on the set {maxi |ξi+1σ(Xi)| >
mξ,σ} and by denoting µε = κ3εC(ε2), this yields

E

[
max

1≤i≤n
ξ2
i+1σ

2(Xi) exp

(
−µε

√ ∑n
i=1 ξ

2
i+1σ

2(Xi)
max1≤i≤n ξ2

i+1σ
2(Xi)

)]

≤ m2
ξ,σE

exp(−µε

√∑n
i=1 ξ

2
i+1σ

2(Xi)

mξ,σ
)

+E
(

max
1≤i≤n

ξ2
i+1σ

2(Xi)1I{max1≤i≤n |ξi+1σ(Xi)|>mξ,σ}

)

≤ m2
ξ,σ

[
E
(

exp(−µε
√
nσ2

τ/(2m2
ξ,σ))

)
+ P

(
| 1
n

n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ | ≥ σ2

τ/2

)]
+m−rξ,σE( max

1≤i≤n
|ξi+1σ(Xi)|r+2)

≤ m2
ξ,σe

−µε
√
nστ/(

√
2mξ,σ) +m2

ξ,σ2pσ−2p
τ E

(∣∣∣∣∣ 1n
n∑
i=1

ξ2
i+1σ

2(Xi)− σ2
τ

∣∣∣∣∣
p)

+m−rξ,σE( max
1≤i≤n

|ξi+1σ(Xi)|r+2).

Again by applying Rosenthal’s inequality (see Lemma 9.1), we obtain that

E

[
max

1≤i≤n
ξ2
i+1σ

2(Xi) exp

(
−µε

√ ∑n
i=1 ξ

2
i+1σ

2(Xi)
max1≤i≤n ξ2

i+1σ
2(Xi)

)]

≤ m2
ξ,σe

−µε
√
nστ/(

√
2mξ,σ) +m2

ξ,σ

C(p, ξ, σ(X))
np

[n+ np/2] + nE(|ξ2σ(X1)|r+2)m−rξ,σ

also bounded by

m2
ξ,σe

−µε
√
nστ/(

√
2mξ,σ) + C ′(p, ξ, σ(X))m2

ξ,σ[n1−p + n−p/2] + nE(|ξ1|r+2)E(|σ(X1)|r+2)m−rξ,σ.

Since E|ξ1|8 < ∞, we take p = 3, c = 4 in Lemma 9.1, r = 4, mξ,σ = στ εC(ε2)κ3
√
n/[2
√

2 ln(n)]
and for any n ≥ 3, and for C1 and C2 some constants depending on the moments of ξ and σ(X),
we find that

E


(

max
1≤i≤n

ξ2
i+1σ

2(Xi)
)

exp

−κ3εC(ε2)

√√√√ n∑
i=1

ξ2
i+1σ

2(Xi)
max1≤i≤n ξ2

i+1σ
2(Xi)

 ≤ C1√
n

+C2

(
ln4(n)√

n

)
1√
n
.

Then the sum over Mn with cardinality less than
√
n of the terms in (26) is bounded by C(1 +

ln(n)4/
√
n)/n for some constant C, by using again that ∆(m?)/n is bounded. 2

9. Appendix

As a reminder, some definitions and properties related to β-mixing sequences are given in this
section. Let (Ω,A,P) be a probability space. Let Y be a random variable with values in a Banach
space (B, ‖ · ‖B), and letM be a σ-algebra of A. Let PY |M be a conditional distribution of Y given
M, and let PY be the distribution of Y . Let B(B) be the borel σ-algebra on (B, ‖ · ‖B). Define now
β(M, σ(Y )) = E

(
supA∈B(X ) |PY |M(A)− PY (A)|

)
The coefficient β(M, σ(Y )) is the usual mixing
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coefficient, introduced by Volkonskĭı and Rozanov (1960). Let X = (Xi)i≥1 be a strictly stationary
sequence of real-valued random variables. For any k ≥ 0, the coefficients βX,1(k) are defined by
βX,1(k) = β(σ(X1), σ(X1+k)), Let Mi = σ(Xk, 1 ≤ k ≤ i). The coefficients βX,∞(k) are defined
by βX,∞(k) = supi≥1,l≥1 sup {β(Mi, σ(Xi1 , . . . , Xil)), i+ k ≤ i1 < · · · < il} ,

In the paper, we do not distinguish between the two types of mixing and denote the coefficients
of the process X by β(k) or βX(k). It is implicit that when only covariance inequality are involved,
then the milder mixing βX,1(k) is required, and we shall assume that stronger βX,∞(k) mixing
coefficients are used in the general case.

Now, a Rosenthal-type inequality for mixing variables can be deduced from Doukhan (1994),
Theorem 2 p.26 and the following result holds:

Lemma 9.1. Let (Yk)1≤k≤n be a sequence of centered and stationary β-mixing variables with
coefficients β(k), admitting moments of order r + 1 and r ≥ 2, then if

∃c ∈ 2N, c ≥ r, such that
∑
k≥1

(k + 1)c−2β(k)
1
c+1 < +∞,

we have the bound

E

∣∣∣∣∣ 1n
n∑
k=1

Yk

∣∣∣∣∣
r

≤ C(r)
{
n1−r[E|Y1|r+1]r/(r+1) + n−r/2[(E|Y1|3)]r/3

}
. (27)

We also use Delyon’s (1990) covariance Inequality, successfully exploited by Viennet (1997) for
partial sums of strictly stationary processes.

Theorem 9.1. (Delyon (1990), Viennet (1997)) Let P be the distribution of Z0 on a probability
space X ,

∫
fdP = EP (f) for any function f P -integrable. For r ≥ 2, let L(r, β, P ) be the set of

functions bZ : X → R+ such that

bZ =
∑
l≥0

(l + 1)r−2bl,Z with 0 ≤ bl,Z ≤ 1 and EP (bl,Z) ≤ βZ(l)

We define Br as Br =
∑
l≥0(l+1)r−2βZ(l). Then for 1 ≤ p <∞ and any function bZ in L(2, β, P ),

EP (bpZ) ≤ pBp+1, as soon as Bp+1 < ∞. The following result holds for a strictly stationary
absolutely regular sequence, (Zi)i∈Z, with β-mixing coefficients (βZ(k))k≥0: if B2 < +∞, there
exists bZ ∈ L(2, β,∞) such that for any positive integer n and any measurable function f ∈ L2(P ),
we have

Var

(
n∑
i=1

f(Zi)

)
≤ 4nEP (bZf2) = 4n

∫
bZ(x)f2(x)dP (x).

Lastly, we recall the version of the Talagrand inequality that is required in the paper. Mention
must be made that it is valid for independent but non necessarily identically distributed random
variables, which is useful here when we work conditionally to one or two of the sequences.

Lemma 9.2. Let Y1, . . . , Yn be independent random variables, let νn,Y (f) = (1/n)
∑n
i=1[f(Yi)−

E(f(Yi))] and let F be a countable class of uniformly bounded measurable functions. Then for
ξ2 > 0

E
[

sup
f∈F
|νn,Y (f)|2 − 2(1 + 2ε2)H2

]
+
≤ 4

K1

(
v

n
e−K1ε

2 nH2
v +

98M2
1

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√

2
nH
M1

)
,

with C(ε2) =
√

1 + ε2 − 1, K1 = 1/6, and

sup
f∈F
‖f‖∞ ≤M1, E

[
sup
f∈F
|νn,Y (f)|

]
≤ H, sup

f∈F

1
n

n∑
k=1

Var(f(Yk)) ≤ v.
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This result follows from the concentration inequality given in Klein and Rio (2005) and arguments
in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).
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