Amplitude-Driven-Adaptive-Neighbourhood Filtering of High-Resolution Pol-InSAR Information
Résumé
In this paper a new method for fltering coherency matrices issued from Synthetic Aperture Radar (SAR) polarimetric interferometric data is presented. For each pixel of the interferogram, an adaptive neighborhood is determined by a region growing technique driven exclusively by the amplitude image information. All the available amplitude images of the interferometric couple are fused in the region growing process to ensure the stationarity hypothesis of the derived statistical population. In addition, for preserving local stationarity requirement of the interferogram, a phase compensation step is performed. Afterwards, all the pixels within the obtained adaptive neighborhood are complex averaged to yield the fltered values of the polarimetric and interferometric coherency matrices. The method has been tested on airborne high-resolution polarimetric interferometric SAR images (Oberpfaffenhofen area - German Space Agency). For comparison purposes, the standard phase compensated fixed multi-look flter and the linear adaptive coherence flter proposed by Lee at al. were also implemented. Both subjective and objective performance analysis, including coherence edge detection, ROC graph and bias reduction tables, recommends the proposed algorithm as a powerful post-processing POL-InSAR tool.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...