Adaptive estimation of the conditional density in presence of censoring. - Archive ouverte HAL
Article Dans Une Revue Sankhya: The Indian Journal of Statistics Année : 2007

Adaptive estimation of the conditional density in presence of censoring.

Elodie Brunel
  • Fonction : Auteur
  • PersonId : 839063
Fabienne Comte
Claire Lacour

Résumé

Consider an i.i.d. sample $(X_i,Y_i)$, $i=1, \dots, n$ of observations and denote by $\pi(x,y)$ the conditional density of $Y_i$ given $X_i=x$. We provide an adaptive nonparametric strategy to estimate $\pi$. We prove that our estimator realizes a global squared-bias/variance compromise in a context of anisotropic function classes. We prove that our procedure can be adapted to positive censored random variables $Y_i$'s, i.e. when only $Z_i=\inf(Y_i, C_i)$ and $\delta_i=\1_{\{Y_i\leq C_i\}}$ are observed, for an i.i.d. censoring sequence $(C_i)_{1\leq i\leq n}$ independent of $(X_i,Y_i)_{1\leq i\leq n}$. Simulation experiments illustrate the method.
Fichier principal
Vignette du fichier
LoiCondcens.pdf (2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00152794 , version 1 (07-06-2007)

Identifiants

  • HAL Id : hal-00152794 , version 1

Citer

Elodie Brunel, Fabienne Comte, Claire Lacour. Adaptive estimation of the conditional density in presence of censoring.. Sankhya: The Indian Journal of Statistics, 2007, 69 (Part 4.), p. 734-763. ⟨hal-00152794⟩
217 Consultations
190 Téléchargements

Partager

More