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ADAPTIVE ESTIMATION OF THE CONDITIONAL DENSITY IN

PRESENCE OF CENSORING

E. BRUNEL(∗),(1), F. COMTE(∗),(2) & C. LACOUR(∗),(3)

Abstract. Consider an i.i.d. sample (Xi, Yi), i = 1, . . . , n of observations and de-
note by π(x, y) the conditional density of Yi given Xi = x. We provide an adaptive
nonparametric strategy to estimate π. We prove that our estimator realizes a global
squared-bias/variance compromise in a context of anisotropic function classes. We prove
that our procedure can be adapted to positive censored random variables Yi’s, i.e. when
only Zi = inf(Yi, Ci) and δi = 1{Yi≤Ci} are observed, for an i.i.d. censoring sequence
(Ci)1≤i≤n independent of (Xi, Yi)1≤i≤n. Simulation experiments illustrate the method.

June 2007

AMS (2000) subject classification. 62N02, 62G07.
Keywords. Adaptive estimation. Censored data. Conditional density. Nonparametric
methods.

1. Introduction

Consider an i.i.d. sample (Xi, Yi)1≤i≤n of couples of random variables with common
probability density function (pdf) f(X,Y ). The marginal density of the Xi’s is also denoted
by fX . Now, define the conditional density function of Yi given Xi = x, for all real y and
x such that fX(x) > 0, by

π(x, y) =
f(X,Y )(x, y)

fX(x)
.

The aim of the paper is to provide a statistical strategy to recover π from the observations.
A Nadaraya-Watson strategy building an estimator as the ratio of an estimator of f(X,Y )

divided by an estimator of fX is conceivable. But estimators resulting of such methods
have the drawback of precisely involving a ratio, with a denominator which can be small.
This is the reason why we provide rather a regression-type strategy based on a mean
square contrast. Using tools developed for standard regression by Baraud et al. (2001), or
for transition density estimation by Lacour (2007) in the Markov chain setting, we propose
a simple adaptive strategy: we both build a collection of projection estimators on finite
dimensional spaces and select, by penalization of the mean square contrast, the adequate
space. Then we prove that the usual squared-bias/variance compromise is achieved, in a
data driven way. It is worth mentioning that the projection spaces need not be the same in
both x and y-directions, and thus, it allows to estimate functions π belonging to possibly
anisotropic Besov spaces.
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We consider moreover the case of positive censored variables Yi’s, which is often en-
countered when survival times are under study. Let (Ci)1≤i≤n be an i.i.d. sequence of
positive censoring variables, with cumulative distribution function (cdf) G, independent
of (Xi, Yi)1≤i≤n. In this context, the observations are

(Xi, Zi, δi)1≤i≤n, Zi = inf(Yi, Ci), δi = 1{Yi≤Ci}.

Then, we can provide both modified contrast and penalty following the transformation
device proposed by Fan and Gijbels (1994) and also using tools for censoring correction
taking advantage of Bitouzé et al. (1999)’s results as developed by Brunel and Comte
(2005).

Kernel strategies involving local polynomials have been studied in the uncensored frame-
work by De Gooijer and Zerom (2003) and Fan et al. (1996), see also Hyndman and Yao
(2002), with possible dependence between the variables of a given sequence. In the con-
text of a censored heteroscedastic regression model, Van Keilegom and Veraverbeke (2002)
propose an estimation procedure to avoid the drawbacks of purely nonparametric kernel
estimators. Indeed, its local building produces a bad behavior whenever the censoring is
heavy in neighborhood of x. All these works have the pointwise feature of kernel esti-
mators when we are in position to control a global integrated risk only. However, they
require regularity conditions on the functions to be estimated much more restrictive than
our flexible estimation tool. Moreover, the theoretical study of bandwidth selection is
often omitted and the practical bandwidth chosen by empirical considerations, whereas
we have at our disposal mathematical methods to prove the good theoretical properties of
our adaptive estimator.

The plan of the paper is the following. First we describe in Section 2 the assumptions
and the model collection. Then the estimators in both uncensored and censored contexts
are defined and discussed in Section 3. The results are stated in Section 4, illustrated via
simulations and examples in Section 5 and proved in Section 6.

2. Model and Assumptions

2.1. Model. To sum up, we consider two different frameworks. In both cases, the (Xi, Yi),
i = 1, . . . n are independent and identically distributed couples of variables. We estimate
π on a given compact set A = A1 ×A2 only. Moreover, we distinguish:

• the uncensored framework, where the variables (Xi, Yi), i = 1 . . . , n are directly
observed;

• the censored framework, where the censoring variables Ci are independent and
identically distributed, with c.d.f. G and the sequences (Xi, Yi) and (Ci), i =
1 . . . , n are independent. In this context, we observe either (Xi, Zi, δi) where Zi =
Yi ∧ Ci and δi = 1{Yi≤Ci}. Only positive variables Yi and Ci, i = 1 . . . , n are
considered.

The aim of the paper is to estimate the conditional density π(x, y) of Yi given Xi = x and
to evaluate the price to pay from uncensored to censored case. Roughly speaking, what
kind of additional constraint would we set to extend the results to censored data.

2.2. Assumptions on the variables. In all cases, we set the following usual assumptions

[A1 ] The conditional density π belongs to the space of bounded and square integrable
functions on A = A1 ×A2 denoted by L∞ ∩ L2(A)
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[A2 ] The density fX verifies ‖fX‖∞ := supx∈A1
|fX(x)| <∞ and there exists a positive

real f0 such that, for all x in A1, fX(x) ≥ f0.

Moreover, in the censored case, we suppose:

[A3 ] For all y ∈ A2, 1 −G(y) ≥ cG > 0.

Note that the lower bound condition [A3] is required only on the compact set A2, which
is a very mild assumption.

2.3. Assumptions on the models. In order to estimate π, we need to introduce a collec-
tion {Sm,m ∈ Mn} of projection spaces, that we call models. For each m = (m1,m2), Sm

is a space of functions with support in A defined by using two spaces: Fm1 and Hm2 which
are subspaces of (L2 ∩ L∞)(R) respectively spanned by two orthonormal bases (ϕm

j )j∈Jm

with |Jm| = Dm1 and (ψm
k )k∈Km with |Km| = Dm2 . For all j and all k, the supports of ϕm

j

and ψm
k are respectively included in A1 and A2. Here j and k are not necessarily integers,

it can be couples of integers as in the case of a piecewise polynomial space see Section 2.4.
Then, we define

Sm = Fm1 ⊗Hm2 = {t, t(x, y) =
∑

j∈Jm

∑

k∈Km

am
j,kϕ

m
j (x)ψm

k (y)}

The assumptions on the models are the following:

[M1 ] For all m2, Dm2 ≤ n1/2 and Dn := maxm∈Mn Dm1 ≤ n1/2/ log(n)
[M2 ] There exist positive reals φ1, φ2 such that, for all u in Fm1 , ‖u‖2

∞ ≤ φ1Dm1

∫
u2,

and for all v in Hm2 , supx∈A2
|v(x)|2 ≤ φ2Dm2

∫
v2. By letting φ0 =

√
φ1φ2, that

leads to

(1) ∀t ∈ Sm ‖t‖∞ ≤ φ0

√
Dm1Dm2‖t‖

where ‖t‖2 =
∫∫

t2(x, y)dxdy and ‖t‖∞ = sup(x,y)∈A1×A2
|t(x, y)|.

[M3 ]Dm1 ≤ Dm′
1
⇒ Fm1 ⊂ Fm′

1
and Dm2 ≤ Dm′

2
⇒ Hm2 ⊂ Hm′

2

The first assumption guarantees that dimSm = Dm1Dm2 ≤ n where n is the number of
observations. The condition [M2] implies a useful link between the L2 norm and the infinite
norm. The third assumption ensures that, for m and m′ in Mn, Sm +Sm′ is included in a
model (since Sm +Sm′ ⊂ Sm′′ with Dm′′

1
= max(Dm1 , Dm′

1
) and Dm′′

2
= max(Dm2 , Dm′

2
)).

We denote by S the space with maximal dimension among the (Sm)m∈Mn . Thus for all
m in Mn, Sm ⊂ S.

[M4 ] Nested model collection: m1 = m2, Hm1 = Fm1 (i.e. Sm = Fm1 ⊗ Fm1) and
Dn := maxm∈Mn Dm1 = maxm∈Mn Dm2 ≤ n1/4.

This assumption is useful, even if a little restrictive, to deal with censored data.

2.4. Examples of models. We show here that Assumptions [M1]–[M3] are not too re-
strictive. Indeed, they are verified for the spaces Fm1 (and Hm2) spanned by the following
bases (see Barron et al. (1999)):

• Trigonometric basis: forA1 = [0, 1], span(ϕ0, . . . , ϕm1−1) with ϕ0 = 1[0,1], ϕ2j(x) =√
2 cos(2πjx) 1[0,1](x), ϕ2j−1(x) =

√
2 sin(2πjx)1[0,1](x) for j ≥ 1. For this model

Dm1 = m1 and φ1 = 2 hold.
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• Histogram basis: forA1 = [0, 1], span(ϕ1, . . . , ϕ2m1 ) with ϕj = 2m1/2
1[(j−1)/2m1 ,j/2m1 [

for j = 1, . . . , 2m1 . Here Dm1 = 2m1 , φ1 = 1.
• Regular piecewise polynomial basis: for A1 = [0, 1], polynomials of degree 0, . . . , r

(where r is fixed) on each interval [(l − 1)/2D, l/2D [, l = 1, . . . , 2D. In this case,
m1 = (D, r), Jm = {j = (l, d), 1 ≤ l ≤ 2D, 0 ≤ d ≤ r}, Dm1 = (r + 1)2D. We can
put φ1 =

√
r + 1.

• Regular wavelet basis: span(Ψlk, l = −1, . . . ,m1, k ∈ Λ(l)) where Ψ−1,k points out

the translates of the father wavelet and Ψlk(x) = 2l/2Ψ(2lx − k) where Ψ is the
mother wavelet. We assume that the support of the wavelets is included in A1 and
that Ψ−1 belongs to the Sobolev space W r

2 .

3. Estimation procedure

3.1. Definition of the contrast. If no censoring occurs, the Yi’s are observed and we
can choose the following contrast

(2) γ0
n(t) =

1

n

n∑

i=1

[

∫

R

t2(Xi, y)dy − 2t(Xi, Yi)].

In fact, it is easy to explain the contrast since

Eγ0
n(t) = E

[∫
t2(X1, y)dy

]
− 2 E(t(X1, Y1)) = ‖t− π‖2

f − ‖π‖2
f

where

‖t‖2
f =

∫∫
t2(x, y)f(x)dxdy.

Therefore γn(t) is the empirical counterpart of ‖t−π‖2
f −‖π‖2

f and its minimization comes

down to minimize ‖t− π‖f . This contrast is new and its originality actually stands in the
links with the regression-type contrasts, as we will see in the next subsection.

Now, let us take into account the fact that the Yi’s may be censored. We use a standard
transformation of the data (see Fan and Gijbels (1994)) and introduce an empirical version
of the weights

(3) wi =





1 without censoring
δi

Ḡ(Zi)
with censoring,

where Ḡ = 1 − G is the survival function associated with the censoring variables, by
choosing the contrast function

(4) γn(t) =
1

n

n∑

i=1

(∫

R

t2(Xi, y)dy − 2ŵit(Xi, Zi)

)
, ŵi =





1 without censoring
δi

̂̄G(Zi)
with censoring.

Here ˆ̄G is the Kaplan Meier estimator of the c.d.f of the Ci’s, modified in the way suggested
by Lo et al. (1989), and defined by

(5) ̂̄G(y) =
∏

Z(i)≤y

(
n− i+ 1

n− i+ 2

)1−δ(i)

.
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Note that ̂̄G is built in order to satisfy the following useful property: ̂̄G(y) ≥ 1/(n + 1),
∀y. Moreover, it follows from Lemma 1 in Section 6, that it is a very good estimator of
Ḡ on the interval A2 provided A2 ( [0, τ ] where τ = sup{y,G(y) < 1}, which condition is
ensured by Assumption [A3]. Therefore, we define

(6) π̂m = arg min
t∈Sm

γn(t),

in the sense explained in Section 3.2, and lastly, we set

(7) m̂ = arg min
m∈Mn

{γn(π̂m) + pen(m)}

where pen is a penalty function to be specified later. Note that γ0
n(t) and γn(t) coincide

if no censoring happens by definition of the weights ŵi. Then we can define π̃ = π̂m̂

and compute the empirical mean integrated squared error E‖π − π̃‖2
n where ‖.‖n is the

empirical norm defined by

(8) ‖t‖n =

(
1

n

n∑

i=1

∫

R

t2(Xi, y)dy

)1/2

.

This norm is the natural distance in this problem and we can notice that if t is deterministic
with support included in A1 × R

f0‖t‖2 ≤ E‖t‖2
n = ‖t‖2

f ≤ ‖f‖∞‖t‖2

and then the mean of this empirical norm is equivalent to the L2 norm ‖.‖.
3.2. About the definition of the estimator. We discuss now the definition of π̂m given
by (6). Let t(x, y) =

∑
j∈Jm

∑
k∈Km

aj,kϕ
m
j (x)ψm

k (y) a function in Sm. Then,

(9)
∂γn(t)

∂aj0,k0

= 0 ⇔
∑

j∈Jm

aj,k0

1

n

n∑

i=1

ϕm
j (Xi)ϕ

m
j0(Xi) =

1

n

n∑

i=1

ϕm
j0(Xi)ŵiψ

m
k0

(Zi),

which implies that

∀j0∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ GmAm = Υm,

where Am denotes the matrix (aj,k)j∈Jm,k∈Km ,

Gm =

(
1

n

n∑

i=1

ϕm
j (Xi)ϕ

m
l (Xi)

)

j,l∈Jm

and Υm =

(
1

n

n∑

i=1

ϕm
j (Xi)ŵiψ

m
k (Zi)

)

j∈Jm,k∈Km

.

In fact, we cannot define a unique minimizer of the contrast γn(t), since Gm is not
necessarily invertible. For example, Gm is not invertible if there exists j0 in Jm such that
there is no observation in the support of ϕj0 (Gm has a null column). This phenomenon
happens when localized bases (as histogram bases or piecewise polynomial bases) are used.
However, the following proposition will still enable us to define an estimator:

Proposition 1.

∀j0∀k0
∂γn(t)

∂aj0,k0

= 0 ⇔ ∀y (t(Xi, y))1≤i≤n = PW



(
∑

k

ŵiψ
m
k (Zi)ψ

m
k (y)

)

1≤i≤n



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where PW denotes the orthogonal projection on W = {(t(Xi, y))1≤i≤n, t ∈ Sm} with the
euclidian scalar product 〈 . 〉Rn in Rn.

Thus the minimization of γn(t) leads to a unique vector (π̂m(Xi, y))1≤i≤n defined as
the projection of (

∑
k ŵiψ

m
k (Zi)ψ

m
k (y))1≤i≤n on W. The associated function π̂m(., .) is

not defined uniquely but we can choose a function π̂m in Sm whose values at (Xi, y)
are fixed according to Proposition 1. For the sake of simplicity, we use the notation
(6). The underlying function is a theoretical tool but the estimator is actually the vector
(π̂m(Xi, y))1≤i≤n.

This remark leads to consider the risk defined with the empirical norm, as given by (8).

3.3. Link with classical regression. Let πm(x, y) be the orthogonal projection of π on
Fm1 ⊗Hm2 . Then

πm(x, y) =
∑

k∈Km

π
Fm1
k (x)ψm

k (y)

where π
Fm1
k is the orthogonal projection of πk on Fm1 and πk(x) = E(ψm

k (Y1)|X1 = x).

Then a natural way to estimate π is to estimate the functional coordinates π
Fm1
k (x), for

which a set of regression equations arises by writing

ψm
k (Yi) = πk(Xi) + εi,k, where εi,k = ψm

k (Yi) − E(ψm
k (Yi)|Xi), i = 1, . . . , n.

If no censoring occurs, the above equalities lead to well-known mean square contrast
estimation of πk via minimization over u ∈ Fm1 of

γ(k)
n (u) =

1

n

n∑

i=1

[(ψm
k (Yi))

2 − 2ψm
k (Yi)u(Xi)].

Defining then

π̂
(m1)
k = arg min

u∈Fm1

γ(k)
n (u)

we can propose as an estimator of π:
∑

k∈Km
π̂

(m1)
k (x)ψm

k (y). Selecting the adequate
m = (m1,m2) via a penalized criterion is not tractable with such a formula.
Noticing that for t ∈ Fm1 ⊗Hm2 ,

t(x, y) =
∑

k∈Km

tk(x)ψ
m
k (y) where tk(x) =

∫
t(x, y)ψm

k (y)dy

and

∫ 
 ∑

k∈Km

tk(Xi)ψk(y)




2

dy =
∑

k,k′

tk(Xi)tk′(Xi)

∫
ψm

k (y)ψm
k′ (y)dy =

∑

k

t2k(Xi),

we find a link between γ
(k)
n and our effective general contrast γn:

γ0
n(t) =

1

n

n∑

i=1



∫ 
 ∑

k∈Km

tk(Xi)ψ
m
k (y)




2

dy − 2
∑

k∈Km

tk(Xi)ψ
m
k (Yi)




=
∑

k∈Km

γ(k)
n (tk).
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This shows how γn globalizes the procedure and allows model selection.
The same considerations hold in the censored case by replacing ψm

k (Yi) by Wi,k or Ŵi,k

where

Wi,k = wiψ
m
k (Zi), Ŵi,k = ŵiψ

m
k (Zi) for i ∈ {1, . . . , n}.

The regression equation becomes:

(10) Wi,k = πk(Xi) + εi,k, where εi,k = wiψk(Yi) − E[wiψk(Yi)|Xi],

and

(11) Ŵi,k = Wi,k +Ri,k = πk(Xi) + εi,k +Ri,k,

where Ri,k = ψm
k (Zi)(ŵi −wi), which is a negligible residual term. Note that the residual

is null if there is no censoring.

4. Main results

4.1. Uncensored case. For a function h and a subspace S, let

d(h, S) = inf
g∈S

‖h− g‖ = inf
g∈S

(∫∫
|h(x, y) − g(x, y)|2dxdy

)1/2

.

With an inequality of Talagrand (1996), we can prove the following result in the uncensored
case.

Theorem 1. We consider the uncensored model described in Section 2.1 satisfying As-
sumptions [A1]–[A2]. We consider π̃ the estimator of the conditional density π described
in Section 3 with models verifying Assumptions [M1]–[M3] and the following penalty:

(12) pen(m) = K0‖π‖∞
Dm1Dm2

n
,

where K0 is a numerical constant. Then

(13) E‖π1A − π̃‖2
n ≤ C inf

m∈Mn

{d2(π1A, Sm) + pen(m)} +
C ′

n

where C = max(5‖fX‖∞, 6) and C ′ is a constant depending on φ1, φ2, ‖π‖∞, f0, ‖fX‖∞.
The penalty (12) deserves some comments. First, the constant K0 in the penalty is

purely numerical and calibrated via simulations. On the other hand, the term ‖π‖∞ is
unknown. Note that, as inequality (13) holds for any penalty pen(.) such that pen(m) ≥
K0‖π‖∞Dm1Dm2/n, any upper bound on ‖π‖∞ gives a good result. In practice, ‖π‖∞
is often replaced by an estimator ‖π̂‖∞ where π̂ is an estimator of π. From a theoretical
point of view, this makes the penalty random, and the procedure can be proved to give
the same result as with the penalty above under some additional regularity constraints,
see Birgé and Massart (1997) or Comte (2001).

We can deduce from Theorem 1 the rate of convergence of the risk. For that purpose,
assume that π restricted to A belongs to the anisotropic Besov space on A with regularity
α = (α1, α2). Note that if π belongs to Bα

2,∞(R2), then π restricted to A belongs to

Bα

2,∞(A). Let us recall the definition of Bα

2,∞(A). Let e1 and e2 be the canonical basis
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vectors in R2 and for i = 1, 2, Ar
h,i = {x ∈ R2;x, x + hei, . . . , x + rhei ∈ A}. Next, for x

in Ar
h,i, let

∆r
h,ig(x) =

r∑

k=0

(−1)r−k

(
r

k

)
g(x+ khei)

the rth difference operator with step h. For t > 0, the directional moduli of smoothness
are given by

ωri,i(g, t) = sup
|h|≤t

(∫

A
ri
h,i

|∆ri

h,ig(x)|2dx
)1/2

.

We say that g is in the Besov space Bα

2,∞(A) if supt>0

∑2
i=1 t

−αiωri,i(g, t) < ∞ for ri
integers larger than αi.

The estimation procedure described in the uncensored case allows an adaptation of the
approximation space to each directional regularity. More precisely, assume for example
that α2 > α1. Then the proof of Corollary 1 below shows that the estimator chooses a

space of dimension Dm2 = D
α1/α2
m1 < Dm1 .

Corollary 1. Assume that π restricted to A belongs to the anisotropic Besov space Bα

2,∞(A)

with regularity α = (α1, α2) such that α1 > 1/2 and α2 > 1/2. We consider the spaces
described in Subsection 2.4 (with the regularity r of the polynomials and the wavelets larger
than αi − 1). Then, under the assumptions of Theorem 1,

E‖π1A − π̃‖2
n = O(n−

2ᾱ
2ᾱ+2 ).

where ᾱ is the harmonic mean of α1 and α2 (i.e. 2/ᾱ = 1/α1 + 1/α2).

Thus we obtain the rate of convergence n− 2ᾱ
2ᾱ+2 , which is optimal in the minimax sense

(see Lacour (2007) for the lower bound).

Remark 1. The empirical norm is the more natural in this problem, but if we were
interested in a L2 control of the risk, we may modify the estimation procedure as follows:

(14) π̃∗ =

{
π̃ if ‖π̃‖ ≤ kn

0 else

with kn = n2/3. We may prove in this framework a result similar to Theorem 1 but
bounding E‖π̃∗ − π1A‖2 instead of its empirical version, see Lacour (2007).

4.2. Censored case. In the censored case, the penalty coming out under the same as-
sumptions as previously is

(15) pen(m) = K0(‖π‖∞/cG)(Dm1Dm2/n),

but cG is a quantity that cannot be easily estimated. Therefore, we use more restrictive
assumptions to prove:

Theorem 2. We consider the censored model described in Section 2.1 satisfying Assump-
tions [A1]–[A3]. We consider π̃ the estimator of the conditional density π described in
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Example 1 Example 2

n 200 500 2000 200 500 2000
Censoring 0% 40 % 0% 40% 0% 40% 0% 40% 0% 40% 0% 40%

H 4.91 9.40 2.97 5.50 1.55 3.31 1.73 4.11 1.16 2.93 0.65 2.01
TP 2.70 4.76 2.16 3.19 1.97 2.98 1.43 2.19 1.31 2.17 0.91 1.79

Table 1. Monte-Carlo results (MISE × 100) for the estimator π̃, for K =
500 replications and two bases: H for histograms and TP for Trigonometric
polynomials. Examples 1 and 2.

Section 3 with (nested) models verifying Assumptions [M2]–[M4]. We choose the following
penalty:

(16) pen(m) = K0
φ2

0

f0
E

(
δ1

Ḡ2(Z1)

)
Dm1Dm2

n
,

where K0 is a numerical constant. Then

E‖π1A − π̃‖2
n ≤ C inf

m∈Mn

{d2(π1A, Sm) + pen(m)} +
C ′

n

where C = max(5‖fX‖∞, 6) and C ′ is a constant depending on φ1, φ2, ‖π‖∞, f0, ‖fX‖∞.

Here the penalty involves two quantities that should be estimated: f0, the lower bound
of fX the density of the Xi’s on the interval A1 and the expectation E(δ1/Ḡ

2(Z1)), see
Section 5 for practical implementation.

5. simulations and examples

5.1. Simulation. We study the estimation procedure by generating samples (Xi, Yi) fol-
lowing four models:

• Example 1. Let Yi = b(Xi) + εi, with εi i.i.d. N (0, 1), Xi i.i.d. uniform U([0, 1]),
b(x) = 2x+ 5. We take A = [0, 1] × [3, 9.5].

• Example 2. Let Yi = b(Xi) + εi, with εi i.i.d. Γ(4, 1), Xi i.i.d. uniform U([0, 1]),
b(x) = 2x+ 5. We take A = [0, 1] × [4, 15].

• Example 3. Let Yi = b(Xi) + σ(Xi)εi, with εi i.i.d. Γ(4, 1), Xi i.i.d. uniform

U([0, 1]), b(x) = 2x2 + 5, σ(x) =
√

1.3 − |x|. We take A = [0, 1] × [6, 14].
• Example 4. Given Xi = x, let Yi follow the distribution 0.5N (8−4x, 1)+0.5N (8+

4x, 1). The Xi’s are i.i.d. U([0, 1]). We take A = [0, 1] × [2, 14].

The sets A = A1 × A2 are fixed intervals, roughly calibrated with respect to each distri-
bution. In the first three cases, the conditional density π is given by

π(x, y) = fε((y − b(x))/σ(x))/σ(x),

with b(x) = 2x+5 (examples 1,2) or b(x) = 2x2 +5 (example 3) and σ(x) ≡ 1 (Examples 1

and 2) or σ(x) =
√

1.3 − |x| (Example 3). For Example 4, we have π(x, y) = 0.5 exp(−(y−
8 + 4x)2/2)/

√
2π + 0.5 exp(−(y − 8 − 4x)2/2)/

√
2π.
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Example 3 Example 4

n 200 500 2000 200 500 2000
Censoring 0% 40 % 0% 40% 0% 40% 0% 20% 0% 20% 0% 20%

H 2.28 4.77 1.54 3.16 0.88 2.07 3.23 4.43 2.08 3.17 1.17 2.05
TP 1.29 3.44 1.21 2.36 1.01 1.90 5.45 6.77 5.04 5.60 2.72 3.34

Table 2. Monte-Carlo results (MISE × 100) for the estimator π̃, for K =
500 replications and two bases: H for histograms and TP for trigonometric
polynomials. Examples 3 and 4.
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Figure 1. Plots of the estimated (top-left) with trigonometric basis and
the true (top right) conditional density and y 7→ π(x, y) (full line), π̃(x, y)
(dashed dotted line) for x = 0.15 (bottom-left) and x = 0.90 (bottom-right)
with n = 2000 observations in Example 2 and without censoring.

The penalty is chosen as follows:

(17) 0.5‖π̂‖∞
(

1

n

n∑

i=1

δi
ˆ̄G2(Zi)

)
Dm1Dm2

n
,

where ‖π̂‖∞ is preliminary estimated. We replace ‖π̂‖∞ by a bound equal to 0.4 in
Examples 1, 3 and 4 and to 0.3 in Example 2. We mentioned in Section 4.1 that an upper
bound on π could suit. If the data are uncensored, we recover the empirical version of (12)

with constant K0 calibrated as 0.5. Indeed, the term (1/n)
∑n

i=1 δi/
ˆ̄G2(Zi) is equal to 1

and thus vanishes. In the case of censored data, this term stands for the empirical version
of E(δ1/Ḡ

2(Z1)) (see also Brunel and Comte (2005)). Then, we should follow formula
(16) and estimate f0. But, looking at (15) and for sake of robustness of the formula from
uncensored to censored case, we make a compromise by keeping the factor ‖π̂‖∞.



ESTIMATION OF THE CONDITIONAL DENSITY UNDER CENSORING 11

0
0.5

1
2 

6 
10

14

0

0.2

0.4

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0
0.5

1
2 

6 
10

14

0

0.2

0.4

Figure 2. Plots of the estimated (top-left) with histogram basis and the
true (top right) conditional density and y 7→ π(x, y) (full line), π̃(x, y)
(dashed dotted line) for x = 0.1 (bottom-left) and x = 0.82 (bottom-right),
with n = 2000 observations in Example 4 and without censoring.

We compute the empirical MISE (Mean Integrated Squared Error) over N = 500 repli-
cations of the samples, by averaging over the paths i = 1, . . . , N , the quantities

`(A1)`(A2)

K2

K∑

k=1

(π̃(i)(xk, yk) − π(xk, yk))
2,

where `(Ai) is the length of the interval Ai, i = 1, 2, (xk)1≤k≤K , (yk)1≤k≤K are subdivisions

of A1 and A2 respectively, and π̃(i) is the estimate associated to the ith sample path. Note
that we compute L2-type errors in both x- and y-directions instead of using the empirical
norm in the x-direction: this is to allow comparison with other methods.

When censoring occurs, the Ci’s are generated as exponential random variables E(c) with
parameter c empirically adjusted to reach a given censoring rate (20% or 40%), namely
c = 6.97 for Example 1 (40%), c = 11.11 for Example 2 (40%), c = 10.25 for Example 3
(40%), c = 11.65 for Example 4 (20%). Figures 1 and 2 illustrate the appearance of our
estimates.

We experimented our method using histogram and trigonometric bases for all our ex-
amples, see Tables 1 and 2. We cannot pretend that one basis is much better than the
others since the performances of the estimator depend on the example: sometimes, the
fact that the histogram basis is localized is most useful to detect a change of modality,
e.g. for Example 4; besides, the smoothness of the trigonometric basis gives better results.
Example 3 checks that heteroscedasticity in the model is correctly handled, and Example
4 mimicks the real data illustration of Section 5.2 (change in modality). In all examples,
censoring degrades the results. This is why only 20% of censoring is studied for example
4.

Monte Carlo experiment results are reported in Tables 1 and 2. As expected, censoring
deteriorates the result, but surprisingly, even in smooth Gaussian cases, histograms seem
to work very well and in particular when a change in modality occurs as in Example 4.
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Figure 3. Plots of the Old Faithful geyser data (top right), estimators of
the conditional density with x 7→ π(x, y) for y = y25 = −1.31 (top-right)
and y 7→ π(x, y) for x = x5 = −1.92 (bottom-left) and x = x75 = 1.39
(bottom-right).
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Figure 4. Two-dimensional plot of the estimate of the conditional density
of eruption duration given the waiting time to the eruption for the Old
Faithful geyser data using trigonometric polynomials.

5.2. Example. To compare our results with De Gooijer and Zerom (2003)’s and Hyndman
and Yao (2002)’s, we provide the plot of our estimation results on the Old Faithful Geyser
data, available from Azzalini and Bowman (1990): these are continuously collected data
of 299 observations obtained between 1 and 15 August 1985, waiting time between the
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starts of successive eruptions and duration of the subsequent eruption for the infamous
Old Faithful geyser in Yellowstone National Park, Wyoming, getting its name because of
its punctuality and predictability. Over the years, the length of the interval has increased,
which may be the result of earthquakes affecting subterranean water levels. This have made
the earlier mathematical relationship between duration and interval between eruptions
inaccurate. Nonparametric estimation of the conditional density of the duration time avoid
this problem. The data have been transformed to be centered and with unit variance for
comparison with the previous references. Our results are plotted in Figures 3 and 4. The
estimate is computed using the penalty given by (17) with ‖π̂‖∞ estimated by 1 (see the
picture to read the upper bound). We can see that our results are in accordance with
previous ones: when the waiting time between eruptions is relatively short, the duration
of the next eruption is long, whereas for a longer waiting time (longer than round about
70 minutes), the duration of the next eruption is a mixture of long and short durations.
This results in a unimodal followed by a bimodal behavior of the conditional density of
the duration of eruption given the waiting time between eruptions.

6. Proofs

6.1. Proof of Proposition 1. Equality (9) yields, by multiplying by ψm
k0

(y),

∑

j∈Jm

aj,k0

n∑

i=1

ϕm
j (Xi)ψ

m
k0

(y)ϕm
j0(Xi) =

n∑

i=1

ϕm
j0(Xi)ŵiψ

m
k0

(Zi)ψ
m
k0

(y).

Then, we sum over k0 in Km:
n∑

i=1

t(Xi, y)ϕ
m
j0(Xi) =

n∑

i=1

∑

k0∈Km

ŵiψ
m
k0

(Zi)ψ
m
k0

(y)ϕm
j0(Xi).

If we multiply this equality by a′j0,kψ
m
k (y) and if we sum over k ∈ Km and j0 ∈ Jm, we

obtain
n∑

i=1

[t(Xi, y) −
∑

k0∈Km

ŵiψ
m
k0

(Zi)ψ
m
k0

(y)]
∑

k∈Km

∑

j0∈Jm

a′j0,kϕ
m
j0(Xi)ψ

m
k (y) = 0

i.e.
n∑

i=1

[t(Xi, y) −
∑

k0∈Km

ŵiψ
m
k0

(Zi)ψ
m
k0

(y)]u(Xi, y) = 0

for all u in Sm. So the vector (t(Xi, y) −
∑

k∈Km
ŵiψ

m
k (Zi)ψ

m
k (y))1≤i≤n is orthogonal to

each vector in W. Since t(Xi, y) belongs to W, the proposition is proved.

6.2. Proof of Theorem 1 and 2. For ρ a real larger than 1, let

Ωρ = {∀t ∈ S ‖t‖2
f ≤ ρ‖t‖2

n}
We denote by πm the orthogonal projection of π on Sm. Now,

E‖π̃ − π1A‖2
n = E

(
‖π̃ − π1A‖2

n1Ωρ

)
+ E

(
‖π̃ − π1A‖2

n1Ωc
ρ

)
(18)

To bound the first term, we observe that for all s, t

γn(t) − γn(s) = ‖t− π‖2
n − ‖s− π‖2

n − 2νn(t− s) − 2Rn(t− s)
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where

νn(t) =
1

n

n∑

i=1

{
wit(Xi, Zi) −

∫

R

t(Xi, y)π(Xi, y)dy

}
,

Rn(t) =
1

n

n∑

i=1

t(Xi, Zi) [ŵi − wi] .

Since ‖t− π‖2
n = ‖t− π1A‖2

n + ‖π1Ac‖2
n, we can write

γn(t) − γn(s) = ‖t− π1A‖2
n − ‖s− π1A‖2

n − 2νn(t− s) − 2Rn(t− s).

The definition of m̂ gives, for some fixed m ∈ Mn,

γn(π̃) + pen(m̂) ≤ γn(πm) + pen(m)

And then

‖π̃ − π1A‖2
n ≤ ‖πm − π1A‖2

n + pen(m) + 2Rn(π̃ − πm)

+2νn(π̃ − πm) − pen(m̂)

≤ ‖πm − π1A‖2
n + pen(m) + 2‖π̃ − πm‖f sup

t∈Bf (m̂)
Rn(t)

+2‖π̃ − πm‖f sup
t∈Bf (m̂)

νn(t) − pen(m̂)

where, for all m′, Bf (m′) = {t ∈ Sm + Sm′ , ‖t‖f = 1}. Let θ a real larger than 2ρ and
p(., .) a function such that 2θp(m,m′) ≤ pen(m) + pen(m′). Then

‖π̃ − π1A‖2
n1Ωρ ≤ ‖πm − π1A‖2

n +
1

θ
‖π̃ − πm‖2

f1Ωρ + 2pen(m)

+2θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
ν2

n(t) − p(m,m′)

]

+

1Ωρ

+2θ
∑

m′∈Mn

sup
t∈Bf (m′)

R2
n(t)1Ωρ(19)

But ‖π̃ − πm‖2
f1Ωρ ≤ ρ‖π̃ − πm‖2

n1Ωρ ≤ 2ρ‖π̃ − π1A‖2
n1Ωρ + 2ρ‖π1A − πm‖2

n.
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Then, inequality (19) becomes

‖π̃ − π1A‖2
n1Ωρ

(
1 − 2ρ

θ

)
≤

(
1 +

2ρ

θ

)
‖πm − π1A‖2

n + 2pen(m)

+2θ
∑

m′∈Mn

[
sup

t∈Bf (m′)
ν2

n(t) − p(m,m′)

]

+

1Ωρ

+2θ
∑

m′∈Mn

sup
t∈Bf (m′)

R2
n(t)1Ωρ

so E
(
‖π̃ − π1A‖2

n1Ωρ

)
≤ θ + 2ρ

θ − 2ρ
E‖π1A − πm‖2

n +
2θ

θ − 2ρ
pen(m)

+
2θ2

θ − 2ρ

∑

m′∈Mn

E

([
sup

t∈Bf (m′)
ν2

n(t) − p(m,m′)

]

+

1Ωρ

)

+
2θ2

θ − 2ρ
E

([
sup

t∈Bf (m̂)
R2

n(t)

]

+

1Ωρ

)
(20)

We now use the following proposition:

Proposition 2. Under the assumptions of Theorem 1, with p(m,m′) = 6‖π‖∞D(m,m′)/n
where D(m,m′)denotes the dimension of Sm + Sm′ or under the assumptions of Theorem
2, with p(m,m′) = 6(φ2

0/f0)E(δ1/Ḡ
2(Z1))D(m,m′)/n, there exists a constant C1 such that

(21)
∑

m′∈Mn

E

([
sup

t∈Bf (m′)
ν2

n(t) − p(m,m′)

]

+

1Ωρ

)
≤ C1

n
.

Moreover, we can prove that

(22) E

([
sup

t∈Bf (m̂)
R2

n(t))

]

+

1Ωρ

)
≤ E

([
sup

t∈Bf (n)
R2

n(t))

]

+

1Ωρ

)
≤ C

n

where Bf (n) is the unit ball of the largest space of the collection (which is nested as Rn

appears only in the censored case).
To prove (22), let us define

(23) ΩG = {ω,∀y ∈ A2,
ˆ̄G(y) −G(y) > −cG/2}.

On ΩG, ˆ̄G(y) > cG/2 and ˆ̄G(y) ≥ 1/(n + 1). Now we use the following key lemma,
useful to control the probability of the uniform deviation of the estimator of the survival

distribution function ˆ̄G:

Lemma 1. For all k ∈ N∗, there exists a constant Ck depending on k and cG such that

E

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2k

)
≤ Ck

nk
.
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This lemma is proved in Brunel and Comte (2005), see Lemma 6.1. Now write, for
(ϕj , ψk) an orthonormal basis of the largest space of the collection,

E

([
sup

t∈Bf (n)
R2

n(t))

]

+

1Ωρ1Ωc
G

)
≤ 1

f0

∑

j,k

E(R2
n(ϕjψk)1Ωc

G
)

≤ φ2
0D2

n

c2Gf0
E

(
1

n

n∑

i=1

( ˆ̄G(Yi) − Ḡ(Yi))
2
1A2(Yi)

ˆ̄G2(Yi)
1Ωc

G

)

≤ φ2
0D2

n

c2Gf0
(n+ 1)2E( sup

y∈A2

| ˆ̄G(y) − Ḡ(y)|21
supy∈A2

| ˆ̄G(y)−Ḡ(y)|>cG/2
)

≤ 2φ2
0n

3

c2Gf0
(2/cG)6E( sup

y∈A2

| ˆ̄G(y) − Ḡ(y)|8) ≤ C

n
.

Next, we need to study Rn on ΩG. To this end, we write that:

E

([
sup

t∈Bf (n)
R2

n(t)

]

+

1Ωρ1ΩG

)
≤ 4

c4G
E

[
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2 sup
t∈Bf (n)

(
1

n

n∑

i=1

t2(Xi, Yi)

)]

≤ 4

c4G
E

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|2
)

sup
t∈Bf (n)

E(t2(X1, Y1))(24)

+
4

c4G
E1/2

(
sup
y∈A2

| ˆ̄G(y) − Ḡ(y)|4
)

E1/2

(
sup

t∈Bf (n)
(νn”(t2))2

)
(25)

where

νn”(t) =
1

n

n∑

i=1

[t(Xi, Yi) − E(t(X1, Y1))].

As under [A1] and [A2], f(X,Y ) is bounded on A, then supt∈Bf (n) E(t2(X1, Y1)) ≤ F1 with

F1 = ‖π‖∞‖fX‖∞, and thus using Lemma 1 gives that (24) is of order 1/n. Next, with
Schwartz inequalities,

E

(
sup

t∈Bf (n)
(νn”(t2))2

)
≤ 1

n

∑

j,j′,k,k′

E(ϕ2
j(X1)ϕ

2
j′(X1))E(ψ2

k(Y1)ψ
2
k′(Y1))

≤ Φ4
0D4

n

n
.

It follows that this term is bounded if Dn ≤ n1/4. This implies that (25) is also of order
1/n. Gathering both terms (on ΩG and Ωc

G) gives Inequality (22).
Then, with θ = 3ρ, inequalities (20) and (21) yield

(26) E
(
‖π̃ − π1A‖2

n1Ωρ

)
≤ 5‖f‖∞‖πm − π1A‖2 + 6pen(m) +

9ρC1

n

The penalty term pen(m) has to verify pen(m) + pen(m′) ≥ 36ρAD(m,m′)/n i.e.
36ρAdim(Sm + Sm′)/n ≤ pen(m) + pen(m′), where A = ‖π‖∞ in the uncensored case
and A = (φ2

0/f0)E(δ1/Ḡ(Z1)) in the censored case. We choose ρ = 3/2 and so pen(m) =
54A(Dm1Dm2)/n.
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To bound the second term in (18), we recall (see Section 3) that (π̂m̂(Xi, y))1≤i≤n is the

orthogonal projection of (
∑

k Ŵi,kψk(y))1≤i≤n on

W = {(t(Xi, y))1≤i≤n, t ∈ Sm̂}
where ψk = ψm̂

k . Thus, since PW denotes the orthogonal projection on W, using (10)-(11)

(π̂m̂(Xi, y))1≤i≤n = PW((
∑

k

Ŵi,kψk(y))1≤i≤n)

= PW((
∑

k

πk(Xi)ψk(y))1≤i≤n) + PW((
∑

k

εi,kψk(y))1≤i≤n) + PW ((
∑

k

Ri,kψk(y))1≤i≤n)

= PW(π1A(Xi, y))1≤i≤n) + PW((
∑

k

εi,kψk(y))1≤i≤n) + PW((
∑

k

Ri,kψk(y))1≤i≤n)

We denote by ‖.‖Rn the Euclidean norm in Rn, by X the vector (Xi)1≤i≤n, by εk the
vector (εi,k)1≤i≤n and by Rk the vector (Ri,k)1≤i≤n . Thus

‖π1A − π̂m̂‖2
n

=
1

n

∫
‖π1A(X, y) − PW(π1A(X, y)) − PW(

∑

k

εkψk(y)) − PW(
∑

k

Rkψk(y))‖2
Rndy

=
1

n

∫
‖π1A(X, y) − PW(π1A(X, y))‖2

Rndy +
1

n

∫
‖PW (

∑

k

(εk +Rk)ψk(y))‖2
Rndy

≤ 1

n

∫
‖π1A(X, y)‖2

Rndy +
2

n

∫
‖
∑

k

εkψk(y)‖2
Rndy +

2

n

∫
‖
∑

k

Rkψk(y)‖2
Rndy

≤ 1

n

n∑

i=1

‖π‖∞
∫
π(Xi, y)dy +

2

n

n∑

i=1

∫
[
∑

k

εi,kψk(y)]
2dy +

2

n

n∑

i=1

∫
[
∑

k

Ri,kψk(y)]
2dy

≤ ‖π‖∞ +
2

n

n∑

i=1

∑

k

ε2i,k +
2

n

n∑

i=1

∑

k

R2
i,k.

But Assumption [M2] implies ‖∑k∈Km̂
ψ2

k‖∞ ≤ φ2Dm̂2 . So, using (11),

ε2i,k ≤ 2(wiψk(Zi))
2 + 2E[wiψk(Zi)|Xi]

2

and
∑

k

ε2i,k ≤ 2
∑

k

ψ2
k(Yi)

Ḡ2(Zi)
+ 2E[

∑

k

ψ2
k(Yi)

Ḡ2(Zi)
|Xi] ≤ 4

φ2Dm̂2

c2G

On the other hand,

∑

k

R2
i,k ≤

∑

k

ψ2
k(Yi)

| ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

c2G
̂̄G

2
(Yi)

≤ φ2Dm̂2

c2G

| ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

̂̄G
2
(Yi)

.

Thus, it follows from the previous study (and in particular from Lemma 1), that the
following inequality holds

(27) E1/2




 1

n

n∑

i=1

| ̂̄G(Yi) − Ḡ(Yi)|21A2(Yi)

̂̄G
2
(Yi)




2
 ≤ κ

n
.
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Using (27), we obtain

(28) E
(
‖π1A − π̂m̂‖2

n1Ωc
ρ

)
≤ (‖π‖∞ + 8

φ2n
1/2

c2G
)P(Ωc

ρ) +
2κφ2

c2Gn
1/2

P1/2(Ωc
ρ).

Now we will use the following proposition:

Proposition 3. Let ρ > 1. Then, under the assumptions of Theorem 1, there exists

C2 > 0 such that P (Ωc
ρ) ≤

C2

n3/2
.

This proposition implies that E
(
‖π1A − π̂m̂‖2

n1Ωc
ρ

)
≤ C3

n
.

Now we use (26) and we observe that this inequality holds for all m in Mn, so

E‖π̃ − π1A‖2
n ≤ C inf

m∈Mn

(‖π1A − πm‖2 + pen(m)) +
C4

n

with C = max(5‖f‖∞, 6).

6.3. Proof of Proposition 2. Let Γi(t) = δit(Xi, Yi)/Ḡ(Yi)−
∫
t(Xi, y)π(Xi, y)dy. Then

νn(t) = (1/n)
∑n

i=1 Γi(t). We use the following lemma:

Lemma 2. (Talagrand (1996))
Let U1, . . . , Un i.i.d. variables and (ζt)t∈B a set of functions and B is a unit ball of a finite
dimensional subspace of L2(A). Let νn(t) = (1/n)

∑n
i=1[ζt(Ui) − E(ζt(Ui))]. We suppose

that
(1) sup

t∈B
‖ζt‖∞ ≤M1, (2) E(sup

t∈B
|νn(t)|) ≤ H, (3) sup

t∈B
Var[ζt(U1)] ≤ v.

Then, there exists K > 0, K1 > 0, K2 > 0 such that

E

[
sup
t∈B

ν2
n(t) − 6H2

]

+

≤ K

[
v

n
e−K1

nH2

v +
M2

1

n2
e
−K2

nH
M1

]

Here ζt(x, y, δ) = δt(x, y)/Ḡ(y)−
∫
t(x, u)π(x, u)du and B = Bf (m′). We now compute

M1, H and v.
(1)We recall that Sm+Sm′ is included in the model Sm′′ with dimension max(Dm1 , Dm′

1
)

max(Dm2 , Dm′
2
).

sup
t∈B

‖ζt‖∞ ≤ sup
t∈B

‖t‖∞(1/cG + 1)

≤ φ0(1/cG + 1)
√

max(Dm1 , Dm′
1
)max(Dm2 , Dm′

2
)‖t‖ ≤ (1/cG + 1)φ0

f0
n1/2.

Then we set M1 =
(1/cG + 1)φ0

f0
n1/2.

(2) Var[ζt(U1)] = E
(
[Γ1(t)]

2
)
≤ E

[
t2(X1, Y1)

Ḡ(Y1)

]
≤ 1

cG
E
[
t2(X1, Y1)

]
≤ ‖π‖∞

cG
‖t‖2

f .

Then v =
‖π‖∞
cG

.
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(3) Let (ϕ̄j ⊗ ψk)(j,k)∈Λ(m,m′) be an orthonormal basis of (Sm + Sm′ , ‖.‖f ).

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

E(ν2
n(ϕ̄j ⊗ ψk)) =

∑

j,k

1

n2
E



(

n∑

i=1

Γi(ϕ̄j ⊗ ψk)

)2



=
∑

j,k

1

n
E
(
Γ2

1(ϕ̄j ⊗ ψk)
)
.

In the uncensored case, we find

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

1

n
E
(
ϕ̄2

j(X1)ψ
2
k(Y1)

)
≤ ‖π‖∞

n

∑

j,k

∫
ϕ̄2

j (x)ψ
2
k(y)f(x)dxdy

≤ ‖π‖∞
n

D(m,m′).

In the censored case, the assumptions are more restrictive because we need to use the
norm connection on Sm + Sm′ , that is we need Sm + Sm′ to be a space of the collection.
Indeed, in the general case above, the bound would be ‖π‖∞D(m,m′)/(ncG) and cG can
not be estimated. Whereas under [M4], we find

E(sup
t∈B

|ν2
n(t)|) ≤

∑

j,k

1

nf0
E

(
δ1ϕ

2
j (X1)ψ

2
k(Z1)

Ḡ2(Z1)

)
≤ 1

nf0
E

(
δ1‖
∑

j,k ϕ
2
jψ

2
k‖∞

Ḡ2(Z1)

)

≤ E

(
δ1

Ḡ2(Z1)

)
φ2

0

f0

D(m,m′)

n
.

Then E(sup
t∈B

ν2
n(t)) ≤ AD(m,m′)/n and H2 = AD(m,m′)/n with A = ‖π‖∞ in the uncen-

sored case or A = (φ2
0/f0)E(δ1/Ḡ

2(Z1)) in the censored case.
According to Lemma 2, there exists K ′ > 0, K1 > 0, K ′

2 > 0 such that

E

[
sup

t∈Bf (m′)
ν2

n(t) − 6H2

]

+

≤ K ′

[
1

n
e−K1D(m,m′) +

1

n
e−K′

2

√
D(m,m′)

]
.

So, if p(m,m′) = 6H2 = 6AD(m,m′)/n,

∑

m′∈Mn

E

[
sup

t∈Bf (m′)
ν2

n(t) − p(m,m′)

]

+

≤ K ′

n


 ∑

m′∈Mn

(e−K1D(m,m′) + e−K′
2

√
D(m,m′))


 ≤ A1

n
,

and the result follows. �

6.4. Proof of Proposition 3. First we observe that

P (Ωc
ρ) ≤ P

(
sup
t∈B

|νn(t2)| > 1 − 1/ρ

)

where νn(t) =
1

n

n∑

i=1

∫
[t(Xi, y) −E(t(Xi, y))]dy and B = {t ∈ S, ‖t‖f = 1}. We denote by

(ϕj , ψk) the orthonormal basis of S, the set of maximal dimension of the collection.
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But, if t(x, y) =
∑

j,k aj,kϕj(x)ψk(y), then

νn(t2) =
∑

j,j′

∑

k

aj,kaj′,kν̄n(ϕjϕj′)

where

(29) ν̄n(u) =
1

n

n∑

i=1

[u(Xi) − E(u(Xi))].

Let bj = (
∑

k a
2
j,k)

1/2, then |νn(t2)| ≤ ∑
j,j′ bjbj′ |ν̄n(ϕjϕj′)| and, if t ∈ B,

∑
j b

2
j =∑

j

∑
k a

2
j,k = ‖t‖2 ≤ f−1

0 .
Thus

sup
t∈B

|νn(t2)| ≤ f−1
0 sup∑

b2j=1

∑

j,l

bjbl|ν̄n(ϕjϕl)|.

Lemma 3. Let Bj,l = ‖ϕjϕl‖∞ and Vj,l = ‖ϕjϕl‖2. Let, for any symmetric matrix (Aj,l)

ρ̄(A) = sup∑
a2

j =1

∑

j,l

|ajal|Aj,l

and L(ϕ) = max{ρ̄2(V ), ρ̄(B)}. Then, if [M2] is satisfied, L(ϕ) ≤ φ1D2
n.

This lemma is proved in Baraud et al. (2001).

Let x =
f2
0 (1 − 1/ρ)2

4‖f‖∞L(ϕ)
and ∆ =

{
∀j∀l |ν̄n(ϕjϕl)| ≤ 4

[
Bj,lx+ Vj,l

√
2‖f‖∞x

]}
. On ∆:

sup
t∈B

|νn(t2)| ≤ f−1
0 sup∑

b2j =1

∑

j,l

bjbl

[
Bj,lx+ Vj,l

√
2‖f‖∞x

]

≤ f−1
0

[
ρ̄(B)x+ ρ̄(V )

√
2‖f‖∞x

]

≤ (1 − 1/ρ)

[
f0(1 − 1/ρ)

4‖f‖∞
ρ̄(B)

L(ϕ)
+

1√
2

(
ρ̄2(V )

L(ϕ)

)1/2
]

≤ (1 − 1/ρ)

[
1

4
+

1√
2

]
≤ (1 − 1/ρ).

Then P

(
sup
t∈B

|νn(t2)| > 1 − 1

ρ

)
≤ P (∆c).

To bound P (ν̄n(ϕjϕl) ≥ Bj,lx+ Vj,l

√
2‖f‖∞x), we will apply the Bernstein inequality

given in Birgé and Massart (1998) to the independent variables U j,l
i = ϕj(Xi)ϕl(Xi). We

get

P (|ν̄n(ϕjϕl)| ≥ Bj,lx+ Vj,l

√
2‖f‖∞x) ≤ 2e−nx.

Given that P (Ωc
ρ) ≤ P (∆c) =

∑
j,l P

(
|ν̄n(ϕjϕl)| > Bj,lx+ Vj,l

√
2‖f‖∞x

)
,

P (Ωc
ρ) ≤ 2D2

n exp

{
−nf

2
0 (1 − 1/ρ)2

40‖f‖∞L(ϕ)

}
≤ 2n exp

{
−f

2
0 (1 − 1/ρ)2

40‖f‖∞
n

L(ϕ)

}
.
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But L(ϕ) ≤ φ1D2
n ≤ φ1n/ log2(n), so

(30) P (Ωc
ρ) ≤ 2n exp

{
−f

2
0 (1 − 1/ρ)2

40‖f‖∞φ1
log2(n)

}
≤ C

n3/2
.

6.5. Proof of Corollary 1. To control the bias term, we state the following lemma proved
in Lacour (2007) and following from Hochmuth (2002) and Nikol′skĭı (1975):

Lemma 4. Let πA belong to Bα

2,∞(A). We consider that S ′
m is one of the following spaces

on A:

• a space of piecewise polynomials of degrees bounded by si > αi − 1 (i = 1, 2) based
on a partition with rectangles of sidelengthes 1/Dm1 and 1/Dm2 ,

• a linear span of {φλψµ, λ ∈ ∪m1
0 Λ(j), µ ∈ ∪m2

0 M(k)} where {φλ} and {ψµ} are
orthonormal wavelet bases of respective regularities s1 > α1 − 1 and s2 > α2 − 1
(here Dmi

= 2mi , i = 1, 2),
• the space of trigonometric polynomials with degree smaller than Dm1 in the first

direction and smaller than Dm2 in the second direction.

Let π′m be the orthogonal projection of πA on S′
m. Then, there exists a positive constant

C0 such that (∫

A
|πA − π′m|2

)1/2

≤ C0[D
−α1
m1

+D−α2
m2

].

If we choose for S ′
m the set of the restrictions to A of the functions of Sm and πA the

restriction of π to A, we can apply Lemma 4. But π ′
m is also the restriction to A of πm so

that

‖π1A − πm‖ ≤ C0[D
−α1
m1

+D−α2
m2

].

According to Theorem 1

E‖π̃ − π1A‖2
n ≤ C ′′ inf

m∈Mn

{
D−2α1

m1
+D−2α2

m2
+
Dm1Dm2

n

}
.

In particular, if m∗ is such that Dm∗
1

= bn
α2

α1+α2+2α1α2 c and Dm∗
2

= b(Dm∗
1
)

α1
α2 c then

E‖π̃ − π1A‖2
n ≤ C ′′′



D

−2α1
m∗

1
+
D

1+α1/α2

m∗
1

n



 = O

(
n
−

2α1α2
α1+α2+2α1α2

)
.

But the harmonic mean of α1 and α2 is ᾱ = 2α1α2/(α1 + α2). Then E‖π̃ − π1A‖2
n =

O(n−
2ᾱ

2ᾱ+2 ).

The condition Dm1 ≤ n1/2/ log(n) allows this choice of m only if α2
α1+α2+2α1α2

< 1
2 i.e.

if α1 − α2 + 2α1α2 > 0. In the same manner, the condition α2 − α1 + 2α1α2 > 0 must be
verified. Both conditions hold if α1 > 1/2 and α2 > 1/2.
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