Maximal slope of tensor product of Hermitian vector bundles - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Maximal slope of tensor product of Hermitian vector bundles

Huayi Chen

Résumé

We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski's theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle $\overline M$ of the tensor product. In the case where the generic fiber of $M$ is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of $M$. Otherwise we use an explicte version of a result of Ramanan and Ramanathan to reduce the general case to the former one.
Fichier principal
Vignette du fichier
pentmax3.pdf (301.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00151961 , version 1 (05-06-2007)
hal-00151961 , version 2 (02-01-2008)

Identifiants

Citer

Huayi Chen. Maximal slope of tensor product of Hermitian vector bundles. 2007. ⟨hal-00151961v1⟩
127 Consultations
155 Téléchargements

Altmetric

Partager

More