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Abstract

We give an upper bound for the maximal slope of the tensor product of several non-zero

Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski’s

theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle

M of the tensor product. In the case where the generic fiber of M is semistable in the

sense of geometric invariant theory, the estimation is established by constructing, through

the classical invariant theory, a special polynomial which does not vanish on the generic

fibre of M . Otherwise we use an explicte version of a result of Ramanan and Ramanathan

to reduce the general case to the former one.

1 Introduction

It is well known that on a projective and smooth curve over a field of characteristic 0, the
tensor product of two semistable vector bundles is still semistable. This result has been firstly
proved by Narasimhan and Seshadri [NS65] in the complex algebraic geometry framework by
using analytic method. Then it has been reestablished by Ramanan and Ramanathan [RR84] in
the purely algebraic context, through the geometric invariant theory. Their method is based on
a result of Kempf [Kem78], which has also been independently obtained by Rousseau [Rou78],
generalizing the Hilbert-Mumford criterion [MFK94] of semi-stability in the sense of geometric
invariant theory. By reformulating the results of Kempf and Ramanan-Ramanathan, Totaro
[Tot96] (see also [dS] for a review) has given a new proof of a conjecture due to Fontaine
[Fon79], which had been firstly proved by Faltings [Fal89] asserting that the tensor product of
two semistable weakly admissible filtered isocristals is still semistable.

Let us go back to the case of vector bundles. The fact that the tensor product of two
semistable vector bundles on a curve C over a field k of characteristic 0 is still semistable is
equivalent to the fact that for any non-zero vector bundles E and F on C, we have µmax(E ⊗
F ) = µmax(E) + µmax(F ), where the maximal slope µmax of a non-zero vector bundle G over
C is by definition the maximal value of slopes (that is to say, the quotient of the degree by the
rank) of non-zero subbundles of G. When k is of characteristic positive, the above equality is
not true in general (see [Gie73] for a counter-example). Nevertheless, it is easy to prove that
there exists a constant a which depends only on C such that

µmax(E) + µmax(F ) ≤ µmax(E ⊗ F ) ≤ µmax(E) + µmax(F ) + a (1)

for any non-zero vector bundles E and F on C.
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Hermitian vector bundles play in Arakelov geometry the role of vector bundles in algebraic
geometry. Let K be a number field and OK be its integer ring. A Hermitian vector bundle
E = (E, h) on SpecOK is by definition a projective OK-module of finite type E together with
a family of Hermitian metric h = (‖ · ‖σ)σ∈Σ∞

, where Σ∞ is the set of all embedding of K into
C, and for any σ ∈ Σ∞, ‖ · ‖σ is a Hermitian norm on E ⊗OK ,σ C, subject to the condition
that the data (‖ · ‖σ)σ∈Σ∞

is invariant by the complex conjugation, namely for any e ∈ E, any
z ∈ C and any σ ∈ Σ∞, ‖e⊗ z‖σ = ‖e⊗ z‖σ. Similarly to the geometric case, one can define
the (normalized) Arakelov degree of a Hermitian vector bundle E on SpecOK as

d̂egnE =
1

[K : Q]

(
log #(E/OKs1 + · · · + OKsr) −

1

2

∑

σ∈Σ∞

log det(〈si, sj〉σ)
)
,

where (s1, · · · , sr) ∈ Er is an arbitrary element in Er which defines a base of EK over K.
This definition does not depend on the choice of (s1, · · · , sr). For more details, see [Bos96],
[Bos01], [CL02], [Bos04] and [BK07]. The slope of a non-zero Hermitian vector bundle E on

SpecOK is then defined to be the quotient µ̂(E) := d̂egn(E)/ rk(E). We say that a non-zero
Hermitian vector bundle E is semistable if the maximal slope µ̂max(E) of E, defined as the
maximal value of slopes of its non-zero Hermitian subbundles, equals to its slope. If E is
a non-zero Hermitian vector bundle on SpecOK , Stuhler [Stu76] and Grayson [Gra76] have
proved that there exists a unique Hermitian subbundle Edes of E having µ̂max(E) as its slope,
and containing all Hermitian subbundle F of E such that µ̂(F ) = µ̂max(E). Clearly E is
semistable if and only if E = Edes. If it is not the case, then Edes is said to be the Hermitian
subbundle which destabilize E. In a lecture at Oberwolfach, J.-B. Bost [Bos97] conjectured
that the tensor product of two semistable Hermitian vector bundles on the spectrum of an
algebraic integer ring is semistable. This conjecture is equivalent to the assertion that for any
non-zero Hermitian vector bundle E and F on SpecOK ,

µ̂max(E ⊗ F ) = µ̂max(E) + µ̂max(F ).

It is clear that we always have the inequality µ̂max(E ⊗ F ) ≥ µ̂max(E) + µ̂max(F ) since

µ̂max(E) + µ̂max(F ) = µ̂(Edes) + µ̂(F des) = µ̂(Edes ⊗ F des) ≤ µ̂max(E ⊗ F ).

But the inverse inequality remains always open. Several special cases of the conjecture have
been proved and some estimations of type (1) have been obtained with error terms depending
on the ranks of the vector bundles and on the number field K. In the following, we resume
some known results on this conjecture.

1) De Shalit and Parzanovski [dSP06] have proved that if E and F are two semistable Hermi-
tian vector bundles on Spec Z such that rkE + rkF ≤ 5, then E ⊗ F is semistable.

2) In [Bos96] (see also [Gra00]), using the comparison of a Hermitian vector bundle to a direct
sum of Hermitian line bundles, J.-B. Bost has proved that

µ̂max(E1 ⊗ · · · ⊗En) ≤
n∑

i=1

(
µ̂max(Ei) + 3 rkEi log(rkEi)

)

for any family of non-zero Hermitian vector bundles (Ei)
n
i=1 on the spectrum of an algebraic

integer ring.
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3) Recently J.-B. Bost and K. Künnemann [BK07] have proved that, if K is a number field
and E and F are two non-zero Hermitian vector bundles on SpecOK , then

µ̂max(E ⊗ F ) ≤ µ̂max(E) + µ̂max(F ) +
1

2

(
log rkE + log rkF

)
+

log |∆K |
2[K : Q]

,

where ∆K is the discriminant of K.

We state the main result of this article as follows:

Theorem 1.1 Let K be a number field and OK be its integer ring. If (Ei)
n
i=1 is a family of

non-zero Hermitian vector bundles on SpecOK , then

µ̂max(E1 ⊗ · · · ⊗En) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
. (2)

The idea goes back to an article of J.-B. Bost [Bos94] inspired by Bogomolov [Ray81],
Gieseker [Gie77] and Cornalba-Harris [CH88]. In an article of Gasbarri [Gas00] appears also the
similar idea. After the first theorem of Minkowski, we reduce our problem to finding an upper
bound for the Arakelov degree of an arbitrary hermitien line subbundle M of E1 ⊗ · · · ⊗ En.
In the case where MK is semistable (in the sense of geometric invariant theory) for the action
of GL(E1,K)× · · · ×GL(En,K), the classical invariant theory gives invariant polynomials with
coefficients in Z whose Archimedian norms are “small”. The general case can be reduced to
the former one using an explicit version of a result of Ramanan-Ramanathan [RR84].

The structure of this article is as follows. In the second section we recall the first principal
theorem in classical invariant theory and discuss some generalizations in several vector spaces
case. We then establish in the third section an upper bound for the Arakelov degree of a
Hermitian line subbundle with semistable hypothesis. In the fourth section, we give a criterion
of semi-stability (for Hermitian vector bundles) which is an arithmetic analogue of a result of
Bogomolov. We recall in the fifth section some basic notions for filtrations in the category of
vector spaces. Then in the sixth section, we state an explicte version of a result of Ramanan-
Ramanathan in our context and, following the methode of Totaro, give a proof for it. In the
seventh section, we explain how to use the result in previous section to reduce the majoration
of the Arakelov degree of an arbitrary Hermitian line subbundle to the case with semistability
hypothesis, which has already been discussed in the third section. Finally, in the eighth and
the last section, we give the proof of Theorem 1.1.

Acknowlegements. The result presented here is part of my doctorial thesis [Che06],
supervised by J.-B. Bost. The ideas in this article are largely inspired by his article [Bos94]
and his personal notes. I would like to thank him deeply for his instruction and his sustained
encouragement. During my visit in Institut Joseph Fourier, E. Gaudron pointed out to me that
the method in this article, combining with his recent result [Gau07], leads to an estimation,
which is similar to (2), for the tensor product of Adelic vector bundles. I am very grateful to
him for the discussions and for his suggestions on the preparation of this article.

2 Recall on invariant theory

In this section we recall some known results in classical invariant theory. We fix K to be a
field of characteristic 0.

For any finite dimensional vector space V over K and any strictly positive integer u, we
denote by Ju : EndK(V )⊗u → EndK(V ⊗u) the K-linear homomorphism (of vector spaces)
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which sends the tensor product T1⊗· · ·⊗Tu of u elements in EndK(V ) to their tensor product
as endomorphism of V ⊗u. The mapping Ju is actually a homomorphism of K-algebras. Fur-
thermore, as homomorphism of vector spaces, Ju can be written as the composition of following
natural isomorphisms:

EndK(V )⊗u // (V ∨ ⊗ V )⊗u // (V ∨)⊗u ⊗ V ⊗u // (V ⊗u)∨ ⊗ V ⊗u // EndK(V ⊗u),

so is itself an isomorphism. Moreover, there exists an action of the symmetric group Su on V ⊗u

by permuting the factors. This representation of Su defines a homomorphism from the group
algebra K[Su] to EndK(V ⊗u). The elements of Su acts by conjugation on EndK(V ⊗u). If we
identify EndK(V ⊗u) to EndK(V )⊗u by the isomorphism Ju, then the corresponding Su-action
is just the permutation of factors in tensor product. Finally the group GLK(V ) acts naturally
on V ⊗u.

Lemma 2.1 If we denote by ρ : GLK(V ) → EndK(V ⊗u) the natural representation of GLK(V )
on V ⊗u, then the Su-invariant subalgebra EndK(V ⊗u)Su is generated by the image of ρ.

Proof. The action of an arbitrary element in Su by permuting factors and the action of an ar-
bitrary element in GLK(V ) on V ⊗u commute. Hence EndK(V ⊗u)Su contains the subalgebra of
EndK(V ⊗u) generated by the image of ρ. Therefore it suffices to prove the inverse inclusion. As
K is of characteristic 0, EndK(V ⊗u)Su ∼= (EndK(V )⊗u)Su ∼= Su EndK(V ). Since Su EndK(V )
is generated as vector space over K by the elements of the form g⊗u (g ∈ EndK(V )), it is also
generated by g⊗u (g ∈ GLK(V )) since GLK(V ) is Zariski dense in EndK(V ) (K being of char-
acteristic 0). 2

We recall below the “first principal theorem” of classical invariant theory (cf. [Wey97]
Chapter III, see also [ABP73] Appendix 1).

Theorem 2.2 Let V be a finite dimensional vector space over K and let u, v ≥ 1 be two
integers. If T is a non-zero elements in V ⊗u ⊗ V ∨⊗v, which is invariant under the action
of GLK(V ), then u = v, and T is a linear combination of permutations (here we identify
V ⊗u ⊗ V ∨⊗u with EndK(V ⊗u)).

Proof. Let a ∈ K× be an element which is not root of unity (this is always possible since K
is of characteristic 0) and let g = a IdV ∈ GLK(V ). The action of g on V ⊗u⊗V ∨⊗v is au−v Id.
If there exists a non-zero vector in V ⊗u ⊗ V ∨⊗v which is invariant by the action of GLK(V ),
then au−v = 1. Therefore u = v since a is not root of unity.

Let A = EndK(V ⊗u) and let B be the image of K[Su] in A by the representation of
permutations, which is a subalgebra of A. The K-algebra A is simple, central and of fi-
nite rank over K. the sub-K-algebra B is semistable. After Lemma 2.1, the commutant
B′ = EndK(V ⊗u)Su of B is the subalgebra of A generated by the image of the representation
ρ : GLK(V ) → EndK(V ⊗u). By the bicommutant theorem (see for example [Jac89], [Lan02]
or [Pie82]), we have B′′ = B. Therefore, the endomorphisms of V ⊗u which are invariant by
the action of GLK(V ) lie in B, i.e., are linear combination of permutations. 2

Let (Vi)1≤i≤n be a family of finite dimensional non-zero vector space over K. Let u =
(ui)1≤i≤n be a family of strictly positive integers. We denote by G the group GLK(V1) ×
· · · × GLK(Vn) and by Su the product Su1 × · · · × Sun

of symmetric groups. The group
algebra K[Su] is isomorphic to K[Su1 ] ⊗K · · · ⊗K K[Sun

]. On the other hand, we have
a natural isomorphism of K-algebras from EndK(V ⊗u1

1 ⊗ · · · ⊗ V ⊗un
n ) to EndK(V1)

⊗u1 ⊗K
· · · ⊗K EndK(Vn)⊗un . The group G acts naturally on V ⊗u1

1 ⊗ · · · ⊗ V ⊗un
n . We denote by
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ρ : G → EndK(V ⊗u1
1 ⊗ · · · ⊗ V ⊗un

n ) the corresponding representation. Finally the group Su

acts on V ⊗u1
1 ⊗ · · · ⊗ V ⊗un

n by permutating tensor factors.

Lemma 2.3 The algebra EndK(V ⊗u1
1 ⊗ · · · ⊗ V ⊗un

n )Su is generated by the image of ρ.

Proof. For any integer 1 ≤ i ≤ n, we denote by Ci the canonical image of K[Sui
] in

EndK(V ⊗ui

i ). The algebra EndK(V ⊗u1
1 ⊗ · · · ⊗ V un

n )Su is the commutant of the canonical
image of K[Su] in EndK(V ⊗u1

1 ⊗ · · · ⊗ V ⊗un
n ) ∼= EndK(V ⊗u1

1 ) ⊗ · · · ⊗ EndK(V ⊗un
n ), which is

identified with C1⊗· · ·⊗Cn. As the commutant of tensor product equals to the tensor product
of commutants, we have

EndK(V ⊗u1
1 ⊗ · · · ⊗ V ⊗un

n )Su ∼= C′
1 ⊗ · · · ⊗ C′

n,

where C′
i is the commutant of Ci. After Lemma 2.1, the sub-K-algebra C′

i of EndK(V ⊗ui

i ) is
generated by the image of GLK(V ⊗ui

i ). Therefore C′
1 ⊗ · · · ⊗ C′

n is generated by the image of
G. 2

Theorem 2.4 With the notations above, if v = (vi)1≤i≤n is a family of strictly positive inte-
gers and if T is a non-zero element in U := V ⊗u1

1 ⊗ V ∨⊗v1
1 ⊗ · · · ⊗ V ⊗un

n ⊗ V ∨⊗vn
n which is

invariant by the action of G, then u = v, and T is a linear combination of elements in Su.

Proof. Let a ∈ K× be an element which is not root of unity. For any integer 1 ≤ i ≤ n, the
action of

IdV1 × · · · × IdVi−1 ×a IdVi
× IdVi+1 × · · · × IdVn

on U is the homothetic transformation by aui−vi . As U has a non-zero vector invariant by G,
we know that aui−vi = 1 and hence ui = vi. Therefore we can identify U with the underlying
vector space of A := EndK(V ⊗u1

1 ⊗ · · · ⊗ V ⊗un
n ). Let B be the canonical image of K[Su] by

the representation of permutations, which is a sub-K-algebra of A. The algebra A is simple,
central and of finite rank over K. The subalgebra B of A is semi-simple since it is a quotient
of the algebra of a finite group. After the bicommutant theorem, we have B′′ = B. Hence the
endomorphisms in V ⊗u1

1 ⊗ · · · ⊗ V ⊗un
n which are invariant by the action of G lie in B, so are

linear combinations of elements in Su. 2

Let G be an algebraic group over SpecK and X be a projective variety over SpecK.
Suppose that G acts on X and that L is an ample G-linear line bundle on X . We say that a
rational point x of X is semistable for the action of G relatively to L if there exists an integer
D ≥ 1 and a section s ∈ H0(X,L⊗D) invariant under the action of G such that x lies in the
open subset of X defined by the non-vanishing of s. Clearly x is semistable for the action of
G relatively to L if and only if it is semistable for the action of G relatively to any strictly
positive tensor power of L.

Let (Vi)1≤i≤n be a family of finite dimensional non-zero vector space over K, Ξ be a finite
family of non-identically zero mappings from {1, · · · , n} to N and (bi)1≤i≤n be a family of

integers. We denote by W the vector space
⊕

α∈Ξ

⊗n
i=1 V

⊗α(i)
i and by G the algebraic group

GLK(V1)×K · · · ×K GLK(Vn). The group G acts naturally on W . Let L be the G(K)-module
(detV1)

⊗b1 ⊗ · · · ⊗ (detVn)⊗bn . For any integer D ≥ 1 and any element α = (αj)1≤j≤D ∈ ΞD,
let

prα : W⊗D −→ V
⊗(α1(1)+···+αD(1))
1 ⊗ · · · ⊗ V ⊗(α1(n)+···+αD(n))

n

be the canonical projection. For any integer 1 ≤ i ≤ n, let ri be the rank of Vi over K. Finally
let π : P(W∨) → SpecK be the canonical morphism.
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Theorem 2.5 With the notations above, if m is a strictly positive integer and if R is a vector
space of rank 1 of W (considered as a rational point of P(W∨)) which is semistable for the
action of G relatively to OW∨(m) ⊗ π∗L, then there exists an integer D ≥ 1 and a family
α = (αj)1≤j≤mD of elements in Ξ such that, by noting A = α1+· · ·+αmD, one has A(i) = Dbiri
for any 1 ≤ i ≤ n (this implies in particular that bi ≥ 0 for any 1 ≤ i ≤ n). Furthermore,
there exists an element σ ∈ Sa(1) × · · · × Sa(n) such that the composition of homomorphisms

R⊗mD ⊗ L∨⊗D // W⊗mD ⊗ L∨⊗D
prα ⊗ Id

// V
⊗A(1)
1 ⊗ · · · ⊗ V

⊗A(n)
n ⊗ L∨⊗D

σ⊗Id

��

V
⊗A(1)
1 ⊗ · · · ⊗ V

⊗A(n)
n ⊗ L∨⊗D

detV1

⊗Db1⊗···⊗detVn

⊗Dbn⊗Id

��

L⊗D ⊗ L∨⊗D ∼= K

does not vanish, where the first arrow is induced by the canonical inclusion of R⊗nD in W⊗nD.

Proof. Since R is semistable for the action of G relatively to OW∨(m) ⊗ π∗L, there exists an
integer D ≥ 1 and an element s ∈ SD(W∨) ⊗ L⊗D which is invariant by the action of G(K)
such that the composition of homomorphisms

R⊗mD ⊗ L∨⊗D // ΓmD(W ) ⊗ L∨⊗D s
// K

does not vanish, the first arrow being the canonical inclusion. Since K[G(K)] is semisimple,
SmD(W∨)⊗L⊗D is a direct factor (as G(K)-module) of (W∨)⊗mD⊗L⊗D. Let s′ ∈ W∨⊗mD⊗
L⊗D be an element invariant by the action of G(K), whose class in SmD(W∨)⊗L⊗D coincides
with s. There then exists α = (αj)1≤j≤mD ∈ ΞD such that the composition

R⊗mD ⊗ L∨⊗D // W⊗mD ⊗ L∨⊗D
prα ⊗ Id

// V
⊗A(1)
1 ⊗ · · · ⊗ V

⊗A(n)
n ⊗ L∨⊗D

s′α
// K

is non-zero, where A = α1 + · · · + αmD and s′α is the component of index α of s′. Choose a

preimage s′′α of s′α in V
∨⊗A(1)
1 ⊗ · · · ⊗ V

∨⊗A(n)
n ⊗ V ⊗Db1r1

1 ⊗ · · · ⊗ V ⊗Dbnrn
n which is invariant

by G(K). After Theorem 2.4, we obtain that A(i) = Dbiri for any 1 ≤ i ≤ n, and that s′′α is a
linear combination of permutations. Therefore the theorem is proved. 2

3 Upper bound for the degree of a Hermitian line sub-
bundle with hypothesis of semi-stability

Let K be a number field and OK be its integer ring. Consider a family (Ei)1≤i≤n of
non-zero Hermitian vector bundles on SpecOK . Let Ξ be a non-empty and finite family of
non-identically zero mappings from {1, · · · , n} to N. We define a new Hermitian vector bundle
over SpecOK as follows

E :=
⊕

α∈Ξ

E
⊗α(1)

1 ⊗ · · · ⊗E
⊗α(n)

n .

In this section, we shall use the ideas in [Bos94] to obtain an upper bound for the Arakelov
degree of a Hermitian line subbundle M of E under the hypothesis of semi-stability (in geo-
metric invariant theory sense) for MK . This upper bound is crucial because, as we shall see
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later, the general case can be reduced to this special one through an argument of Ramanan
and Ramanathan.

For any integer 1 ≤ i ≤ n, let ri be the rank of Ei and let Vi be the vector space Ei,K .
Let W = EK and π : P(W∨) → SpecK be the canonical morphism. We denote by G the
algebraic group GLK(V1) × · · · × GLK(Vn) which acts naturally on P(W∨). Clearly we have

W =
⊕

α∈Ξ

⊗n
i=1 V

α(i)
i . Let (bi)1≤i≤n be a family of strictly positive integers such that ri

divides bi. Finally let
L = (Λr1E1)

⊗b1/r1 ⊗ · · · (ΛrnEn)⊗bn/rn .

Lemma 3.1 Let H be a Hermitian space of dimension d > 0. The norm of the homomorphism
det : H⊗d → ΛdH equals to

√
d!.

Proof. In fact, the homomorphism det can be written as d! orthogonal vectors of norm 1 in
H∨⊗d. So its norm is

√
d!. 2

Theorem 3.2 With the notations above, if m ≥ 1 is an integer and if M is a Hermitian line
subbundle of E such that MK is semistable for the action of G relatively to OW∨(m)⊗ π∗LK,
then

d̂eg(M) ≤ 1

m
d̂eg(L) +

1

2m

r∑

i=1

bi log(rkEi) =

n∑

i=1

bi
m

(
µ̂(Ei) +

1

2
log(rkEi)

)
.

Proof. Let R = MK . With the notations of Theorem 2.5, using the slope inequality (cf.
[Bos96] Appendix) and Lemma 3.1, we get

mDd̂eg(M) −Dd̂eg(L) = mDd̂eg(M) −
n∑

i=1

Dbiµ̂(Ei)

≤
n∑

i=1

A(i) log(ri!)

2ri
=

n∑

i=1

Dbi log(ri!)

2ri
≤ 1

2
D

n∑

i=1

bi log ri,

where we have used the evident estimation r! ≤ rr in the last inequality. If we divide the
inequality by mD, we obtain

d̂eg(M) ≤ 1

m
d̂eg(L) +

1

2m

n∑

i=1

bi log ri =

n∑

i=1

bi
m

(
µ̂(Ei) +

log ri
2

)
.

2

Let m be a strictly positive integer which is divisible by all ri. If we apply Theorem 3.2 to
the special case where Ξ contains a single mapping α such that α(i) = 1 for any i ∈ {1, · · · , n},
in other words, E = E1 ⊗ · · · ⊗ En, and where bi = m for any 1 ≤ i ≤ n, we get the following
upper bound:

Corollary 3.3 If M is a Hermitian line subbundle of E1⊗· · ·⊗En such that MK is semistable
for the action of G relatively to OW∨(m) ⊗ π∗LK, then we have

d̂eg(M) ≤
n∑

i=1

(
µ̂(Ei) +

1

2
log(rkEi)

)
. (3)
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4 A criterion of semi-stability (for Hermitian vector bun-
dles)

We shall give a semi-stability criterion for Hermitian vector bundles, which is the arithmetic
analogue of a result due to Bogomolov in geometric framework (see [Ray81]).

Let E be a non-zero Hermitian vector bundle over SpecOK and let V = EK . We denote
by r its rank. If D : V = V0 ) V1 ) · · · ) Vd = 0 is a flag of V , it induces a strictly decreasing
sequence of saturated sub-OK-modules E = E0 ) E1 ) · · · ) Ed = 0 of E. For any integer
0 ≤ j < d, let rj be the rank of Ej/Ej+1. If a = (aj)0≤j<d is an element in rZd, we denote by

L
a

D the Hermitian line bundle (on SpecOK)

L
a

D :=
d−1⊗

j=0

(
(Λrj (Ej/Ej+1))

∨⊗aj ⊗ (ΛrE)⊗
rjaj

r

)
.

Proposition 4.1 The Hermitian vector bundle E is semistable (resp. stable) if and only if
for any integer d ≥ 1, any flag D of length d of V , and any strictly increasing sequence

a = (aj)0≤j<d of integers in rZd, one has d̂eg(L
a

D) ≥ 0 (resp. d̂eg(L
a

D) > 0).

Proof. “=⇒”: By definition, one has

d̂eg(L
a

D) = −
d−1∑

j=0

aj

[
− rk(Ej) − rk(Ej+1)

r
d̂eg(E) + d̂eg(Ej) − d̂eg(Ej+1)

]

= −
d−1∑

j=0

aj

[
rk(Ej)

(
µ̂(Ej) − µ̂(E)

)
− rk(Ej+1)

(
µ̂(Ej+1) − µ̂(E)

)]

= −
d−1∑

j=1

(aj − aj−1) rk(Ej)
(
µ̂(Ej) − µ̂(E)

)
.

If E is semistable (resp. stable), then for any integer 1 ≤ j < d, one has µ̂(Ej) ≤ µ̂(E) (resp.

µ̂(Ej) < µ̂(E)). Hence d̂eg(L
a

D) ≥ 0 (resp. d̂eg(L
a

D) > 0).
“⇐=”: Let E1 be a saturated sub-OK-module of E. Consider the flag D : V ) E1,K ) 0

and the integer sequence a = (0, r). One has

d̂eg(L
a

D) = r rk(E1)
(
µ̂(E) − µ̂(E1)

)
≥ 0 (resp. d̂eg(L

a

D) = r rk(E1)
(
µ̂(E) − µ̂(E1)

)
> 0).

Therefore µ̂(E1) ≤ µ̂(E) (resp. µ̂(E1) < µ̂(E)). As E1 is arbitrary, the Hermitian vector
bundle E is semistable (resp. stable). 2

Remark 4.2 If a = (aj)0≤j<d is a strictly increasing sequence of integers (not necessarily in

rZd) satisfying
∑d−1

j=0 rjaj = 0, then L
a

D is well defined and equals to
⊗d−1

j=0 (Λrj (Ej/Ej+1))
∨⊗aj .

The semi-stability of E implies also d̂eg(L
a

D) ≥ 0.

5 Filtrations of vector spaces

In this section, we introduce some basic notations and results on R-filtrations of vector
spaces, which we shall use in the sequel (see [Che06] or [Che07] for filtrations in general cate-
gories).
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Let K be a (commutative) field and V be a vector space of finite rank over K. We call
(decreasing) R-filtration of V any family F = (FλV )λ∈R of subspaces of V such that FλV ⊃
Fλ′V for λ ≤ λ′. In this article, we suppose that all filtrations are separated (i.e., FλV = 0 for λ
sufficiently positive), exhaustive (i.e., FλV = V for λ sufficiently negative) and left continuous
(i.e., the function x 7→ rkK(FxV ) on R is left continuous). A filtration F of V is equivalent to
the data of a flag

V = V0 ) V1 ) V2 ) · · · ) Vd = 0

of V together with a strictly increasing sequence of real numbers (λi)0≤i<d. In fact, we have the
relation FλV =

⋃
λi≥λ

Vi. We denote by FilV the set of all filtrations of V . If F is a filtration
of V , we define a function λF : V → R∪ {+∞} such that λF (x) = sup{a ∈ R |x ∈ FaV }. The
function λF takes finite value unless at x = 0.

Suppose that V is non-zero. If F is a filtration of V , we denote by νF and we call the
probability measure associated to F the unique Borel measure on R such that

νF ([x, y[) =
rkK(FyV ) − rkK(FxV )

rkK V
.

Let Z be a subset of R. We say that the filtration F is supported by Z if supp(νF ) ⊂ Z. We
denote by FilZV the set of all filtrations of V supported by Z. We define the expectation of F
to be E[F ] :=

∫
R
xdνF (x). If F corresponds to the flag

V = V0 ) V1 ) V2 ) · · · ) Vd = 0

together with the sequence (λi)0≤i<d, then

νF =

d−1∑

i=0

rkK(Vi/Vi+1)

rkK V
δλi
,

where δx is the Dirac measure at x. If e = (e1, · · · , er)T is a base of V , we define νF ,e to be
the Borel measure

νF ,e :=
1

r

r∑

i=1

δλ(ei).

For any bounded increasing function f on R, we have always

∫

R

fdνF ,e ≤
∫

R

fdνF .

Moreover, νF ,e = νF if and only if for any λ ∈ R, e∩FλV generates FλV . In this case, we say
that the base e is compatible with the filtration F . We denote by File the set of all filtrations
of V with which e is compatible. Clearly there exists a one-to-one correspondence Φe from
File to Rr, which sends F to (λF (e1), · · · , λF (er)). If in addition Z is a subset of R, we denote
by FilZ

e
the subset of File consisting of the filtrations supported by Z. The restriction of Φe

on FilZ
e

gives a one-to-one correspondence from FilZ
e

to Zr.
Let F be a subfield of R. If we fix a non-zero vector l in V , then the function F 7→ λF (l)

from FilF
e

to R can be written as the minimal value of a finite number of F -linear forms. In
fact, let l =

∑r
i=1 aiei be the decomposition of l in the base e, then for any filtration F with

which e is compatible, we have
λF (l) = min

1≤i≤n
ai 6=0

λF (ei).
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If ε > 0 is a real number and if F is a filtration of V , then ψεF := (FελV )λ∈R is also a
filtration of V , called the dilation of F by ε. Clearly we have

E[ψεF ] = εE[F ] and λψεF = ελF . (4)

Let (V (i))1≤i≤n be a family of non-zero vector spaces of finite rank and let V =
⊕n

i=1 V
(i)

be their direct sum. If for each integer 1 ≤ i ≤ n, we choose a filtration F (i) of V (i), then we
can construct a filtration F of V such that

FλV =

n⊕

i=1

F (i)
λ V (i).

Clearly we have the relation

νF =
n∑

i=1

rkK V
(i)

rkK V
νF(i) .

The filtration F is called the direct sum of F (i) and will be denoted by F (1) ⊕ · · · ⊕ F (n). If
for each 1 ≤ i ≤ n, e(i) is a base of V (i) which is compatible with F (i), then the disjoint union
e(1)∐· · ·∐e(n), which is a base of V (1)⊕· · ·⊕V (n), is compatible to F (1)⊕· · ·⊕F (n). Similarly,
if W =

⊗n
i=1 V

(i) is the tensor product of V (i), we can also construct a filtration G of W such
that

GλW =
∑

λ1+···+λn≥λ

n⊗

i=1

F (i)
λi
V (i)

The probability νG associated to the filtration G is equal to the convolution

νF(1) ∗ · · · ∗ νF(n) .

The filtration G is called the tensor product of F (i) and will be denoted by F (1) ⊗ · · · ⊗ F (n).
Furthermore, if e(i) is a base of V (i) which is compatible with the filtration F (i), then the base

e(1) ⊗ · · · ⊗ e(n) := {e1 ⊗ · · · ⊗ en | ∀1 ≤ i ≤ n, ei ∈ e(i)}

of V (1) ⊗ · · · ⊗ V (n) is compatible to F (1) ⊗ · · · ⊗ F (n). Finally, if ε > 0 is a positive number,
then

ψε(F (1) ⊗ · · · ⊗ F (n)) = ψεF (1) ⊗ · · · ⊗ ψεF (n). (5)

Let V be a non-zero vector space of finite rank over K. If F and G are two filtrations of
V , we define the scalar product of F and G to be the number

〈F ,G〉 :=

∫

R2

xydνF ,G , (6)

where νF ,G is the unique Borel measure on R2 such that the measure of the square [x1, x2[×[y1, y2[
is

rkK(Fx1V ∩ Gy1V ) − rkK(Fx1V ∩ Gy2V ) − rkK(Fx1V ∩ Gy2V ) + rkK(Fx2V ∩ Gy2V ).

The number ‖F‖ := 〈F ,F〉 1
2 is called the norm of the filtration F . Notice that ‖F‖ = 0 if and

only if νF = δ0. In this case, we say that the filtration F is trivial. If e = (e1, · · · , er)T is a
base in V which is compatible simultaneously with F and with G, we have

νF ,G =

r∑

i=1

1

r
δ(λF (ei),λG(ei))
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Hence

〈F ,G〉 =
1

r

r∑

i=1

λF (ei)λG(ei),

which means that, by identifying File through Φe with a vector space of dimension r over R,
〈·, ·〉 define a scalar product on the corresponding vector space.

Let V be a non-zero vector space of finite rank over K and F be a filtration of V corre-
sponding to the flag

V = V0 ) V1 ) V2 ) · · · ) Vd = 0

together with the sequence (λj)0≤j<d. For any integer 0 ≤ j < d, we pick a base ej of the
subquotient Vj/Vj+1. After choosing a preimage of ej in Vj and taking the disjoint union of the
preimages, we get a base e = (e1, · · · , er) of V which is clearly compatible with the filtration

F . The base e defines a natural isomorphism Ψ form V to
⊕d−1

j=0 (Vj/Vj+1) which sends ei to
its class in Vτ(i)/Vτ(i)+1, where τ(i) = max{j | ei ∈ Vj}. If for any integer 0 ≤ j ≤ d − 1, we
choose a filtration Gj of Vj/Vj+1 which is compatible with the base ej , we can then construct
a filtration G on V which is just the direct sum via Ψ of Gj (1 ≤ j ≤ d). Notice that
the base e is compatible with the new filtration G. If ei is an element in e, then we have
λG(ei) = λGτ(i) (Ψ(ei)). Therefore we have

E[G] =
1

r

d−1∑

j=0

E[Gj ]rkK(Vj/Vj+1), 〈F ,G〉 =
1

r

d−1∑

j=0

λjE[Gj ] rkK(Vj/Vj+1). (7)

6 More facts in geometric invariant theory

We shall establish in this section the explicit version of a result of Ramanan and Ra-
manathan [RR84] (Proposition 1.12) for our particular purpose, along the path indicated by
Totaro [Tot96] in his proof of Fontaine’s conjecture.

Let K be a perfect field. If G is a reductive group over SpecK, we call one parameter
subgroup of G any morphism of K-group schemes from Gm,K to G. Let X be a K-scheme on
which G acts. If x is a rational point of X and if h is a one parameter subgroup of G, then we
get a K-morphism from Gm,K to X given by the composition

Gm,K
h

// G
∼

// G×K SpecK
Id×x

// G×K X
σ

// X ,

where σ is the action of the group. If in addition X is proper over SpecK, this morphism
extends in the unique way to a K-morphism fh,x from A1

K to X . We denote by 0 the unique
element in A1(K)\Gm(K). The morphism fh,x sends the point 0 to a rational point ofX which
is invariant under the action of Gm,K . If L is a G-linear line bundle on X , then the action of
Gm,K on L|fh,x(0) defines a character of Gm,K of the form t 7→ tµ(x,h,L) where µ(x, h, L) ∈ Z.

Furthermore, if we denote by PicG(X) the group of isomorphism classes of all G-linear line
bundles, then µ(x, h, ·) is a homomorphism of groups from PicG(X) to Z.

Recall a well known result which gives a semistability criterion for rational points in a
projective variety equipped with an action of a reductive group.

Theorem 6.1 (Hilbert-Mumford-Kempf-Rousseau) Let G be a reductive group which
acts on a projective variety X over SpecK, L be a G-linear bundle on X and x ∈ X(K) be
a rational point. The point x is semistable for the action of G relatively to L if and only if
µ(x, h, L) ≥ 0 for any one parameter subgroup h of G.
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This theorem has been originally proved by Mumford (see [MFK94]) for the case where
K is algebraically closed. Then it has been independently proved in all generality by Kempf
[Kem78] and Rousseau [Rou78], where Kempf’s approach has been revisited by Ramanan and
Ramanathan [RR84] to prove that the tensor product of two semistable vector bundle on
a smooth curve (over a perfect field) is also semistable. The idea of Kempf is to choose a
special one parameter subgroup h0 of G destabilizing x, which minimizes a certain function.
The uniqueness of his construction enabled us to descend to a smaller field. Later Totaro
[Tot96] introduced a new approach of Kempf’s construction and thus found an elegant proof
of Fontaine’s conjecture.

In the following of this section, we recall Totaro’s approach of Hilbert-Mumford criterion
in our setting. We begin with calculating explicitly the number µ(x, h, L) by using filtrations
introduced in the previous section.

Let V be a vector space of finite rank over K and ρ : G→ GL(V ) be a representation of G
on V . If h : Gm,K → G is a one parameter subgroup, then the multiplicative group Gm,K acts
on V via h and ρ. Hence we can decompose V into direct sum of eigenspaces. More precisely,
we have the decomposition V =

⊕
i∈Z V (i), where the action of Gm,K on V (i) is given by the

composition

Gm,K ×K V (i)
(t7→ti)×Id

// Gm,K ×K V (i) // V (i) ,

the second arrow being the scalar multiplication structure on V (i). The existence of such
decomposition is easy when K is algebraically closed. The case where K is merely perfect
follows by using Galois descent. We then define a filtration Fρ,h (supported by Z) of V such
that

Fρ,h
λ V =

∑

i≥λ

V (i) (λ ∈ R),

called the filtration associated to h relatively to the representation ρ. If there is no ambiguity on
the representation, we also write Fh instead of Fρ,h to simplify the notations. We emphasize
that if G = GL(V ) and if ρ is the canonical representation, then for any filtration F of
V supported by Z, there exists a one-parameter subgroup h of G such that the filtration
associated to h equals to F .

From the scheme-theoretical point of view, the algebraic group G acts via the representation
ρ on the projective space P(V ∨) (with Grothendieck’s convention). Any rational point x of
P(V ∨) corresponds to a 1-dimensional subspace of V in which we pick a non-zero element lx.

Proposition 6.2 One has
µ(x, h,OV ∨(1)) = −λFρ,h(lx)

Proof. Let lx =
∑
i∈Z lx(i) be the canonical decomposition of lx. Let i0 = λFρ,h(lx). It is the

maximal index i such that lx(i) is non-zero. Furthermore, fh,x(0) is just the rational point cor-
responding to the subspace of V generated by lx(i0). By definition, the restriction of OV ∨(1)
on x identifies with the quotient (Klx)

∨ of V ∨. So µ(x, h,OV ∨(1)) = −i0 = −λFρ,h(lx). 2

Let (Vi)1≤i≤n be a finite family of non-zero vector spaces of finite rank over K. For each
integer 1 ≤ i ≤ n, let ri be the rank of Vi. Let G be the algebraic group GL(V1)×· · ·×GL(Vn).
We suppose that the algebraic group G acts on a vector space V . Let π : P(V ∨) → SpecK be
the canonical morphism. For each integer 1 ≤ i ≤ n, we choose an integer mi which is divisible
by ri. Let M be the G-linear line bundle on P(V ∨) as follows

M :=

n⊗

i=1

π∗(ΛriVi)
⊗mi/ri .

12



It is a trivial line bundle on P(V ∨) with possibly non-trivial G-action. Notice that any one
parameter subgroup of G is of the form h = (h1, · · · , hn), where hi is a one parameter sub-
group of GL(Vi). Let Fhi be the filtration of Vi associated to hi relatively to the canonical
representation of GL(Vi) on Vi. The action of Gm,K via hi on ΛriVi is nothing other than the

multiplication by triE[Fhi ]. Therefore, we get the following result:

Proposition 6.3 With the notations above, for any rational point x of P(V ∨), we have

µ(x, h,M) =
n∑

i=1

miE[Fhi ].

We now introduce the Kempf’s destabilizing flag for the action of a finite product of general
linear groups. Consider a family (V (i))1≤i≤n of finite dimensional non-zero vector space over
K. Let W be the tensor product V (1)⊗K · · ·⊗K V (n) and G be the algebraic group GL(V (1))×
· · · × GL(V (n)). For any integer 1 ≤ i ≤ n, let r(i) be the rank of V (i). The group G acts
naturally on W and hence on P(W∨). We denote by π : P(W∨) → SpecK the canonical
morphism. Let m be a strictly positive integer which is divisible by all r(i) and L be a G-linear
line bundle on P(W∨) as follows:

L := OW∨(m) ⊗
n⊗

i=1

π∗(detV (i))⊗(m/r(i)).

Suppose that h = (h1, · · · , hn) is a one-parameter subgroup of G. The filtration Fh of W
associated to h coincides with the tensor product filtration Fh1 ⊗ · · · ⊗ Fhn , where Fhi is the
filtration of V (i) associated to hi. After Proposition 6.2 and 6.3, for any rational point x of
P(W∨), one has

µ(x, h, L) = m
( n∑

i=1

E[Fhi ] − λFh(lx)
)
. (8)

We define a function Λx : FilQ
V (1) × · · · × FilQ

V (n) → R such that

Λx(F (1), · · · ,F (n)) =
E[F (1)] + · · · + E[F (n)] − λF(1)⊗···⊗F(n)(lx)

(‖F (1)‖2 + · · · + ‖F (n)‖2)
1
2

(9)

if at least one filtration among the F (i)’s is non-trivial, and Λx(F (1), · · · ,F (n)) = 0 otherwise.
Notice that the function Λx is invariant under dilation. In other words, if ε > 0 is a positive
number, then

Λx(ψεF (1), · · · , ψεF (n)) = Λx(F (1), · · · ,F (n)).

The Hilbert-Mumford criterion, joint with the equalities (8), (5) and (4), implies the fol-
lowing assertion:

Proposition 6.4 The point x is not semistable for the action of G relatively to L if and only
if the function Λx defined above takes at least one strictly negative value.

The following result generalizes Proposition 2 of [Tot96], and the proof is the same.

Proposition 6.5 With the notations of Proposition 6.4, if x is not semistable for the action
of G relatively to L, then the function Λx attains its minimal value. Furthermore, the element
in FilQ

V (1) × · · · ×FilQ
V (n) minimizing Λx is unique up to dilations. Finally, if (F (1), · · · ,F (n))
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is an element in FilQ
V (1) × · · · × FilQ

V (n) minimizing Λx and if c is the minimal value of Λx,

then for any element (G(1), · · · ,G(n)) in FilQ
V (1) × · · · × FilQ

V (n) , we have the inequality

n∑

i=1

E[G(i)] − λG(1)⊗···⊗G(n)(lx) ≥ c

(
〈F (1),G(1)〉 + · · · + 〈F (n),G(n)〉

)

(‖F (1)‖2 + · · · + ‖F (n)‖2)
1
2

(10)

Proof. For each integer 1 ≤ i ≤ n, let e(i) be a base of V (i). Consider the restriction of Λx on
FilQ

e
(1) × · · · ×FilQ

e
(n) . By embedding canonically FilQ

e
(1) × · · · ×FilQ

e
(n) in the Euclidean space

Fil
e
(1) × · · · × Fil

e
(n) , we extend the restriction of Λx to a function on Fil

e
(1) × · · · × Fil

e
(n) ,

whose numerator part is the maximal value of a finite number of linear forms with rational
coefficients (as we have shown in Section 5) and whose denominator part is just the norm of
vector in the Euclidean space. Then after Lemma 3 of [Tot96], the restriction of Λx on on
FilQ

e
(1) × · · · × FilQ

e
(n) attains its minimal value, and its minimizing element (F (1), · · · ,F (n))

in FilQ
e
(1) × · · · × FilQ

e
(n) is unique up to dilations. As pointed out by Totaro, there are only a

finite number of functions on Euclidean space of dimension r(1) + · · · + r(n) arising from the
restrictions as above. Thus we deduce that the function Λx attains globally its minimal value.
Finally the uniqueness of minimizing filtrations (up to dilations) comes form the fact that for
any two filtrations of V (i) we can choose a base of V (i) which is simultaneously compatible to
them. This is just a consequence of the Bruhart’s decomposition for general linear group. The
same fact combining with Lemma 3 of [Tot96] deduces the inequality (10). 2

Although the minimizing filtrations (F (1), · · · ,F (n)) in Proposition 6.5 are a priori sup-
ported by Q, it is always possible to choose them to be supported by Z after a dilation. Now
let (F (1), · · · ,F (n)) be an element in FilZV (1) × · · · × FilZV (n) minimizing Λx. We suppose that
F (i) corresponds to the flag

D
(i) : V (i) = V

(i)
0 ) V

(i)
1 ) · · · ) V

(i)

d(i)
= 0

and the strictly increasing sequence of integers λ(i) = (λ
(i)
j )0≤j<d(i) . Let G̃ be the algebraic

group

G̃ :=

n∏

i=1

d(i)−1∏

j=0

GL(V
(i)
j /V

(i)
j+1).

Let F = F (1) ⊗ · · · ⊗ F (n) and β = λF (lx), which is the largest integer i such that lx ∈ FiW .

Let W̃ := FiW/Fi+1W and let l̃x be the canonical image of lx in W̃ . Notice that

W̃ =
∑

λ
(1)
j1

+···+λ
(n)
jn

≥β

n⊗

i=1

V
(i)
ji

/ ∑

λ
(1)
j1

+···+λ
(n)
jn
>β

n⊗

i=1

V
(i)
ji

∼=
⊕

λ
(1)
j1

+···+λ
(n)
jn

=β

n⊗

i=1

(
V

(i)
ji
/V

(i)
ji+1

)
.

So the algebraic group G̃ acts naturally on W̃ . Let x̃ be the rational point of P(W̃ ) correspond-

ing to the subspace generated by l̃x. We shall discuss the semistability of x̃ for the action of
G̃.

Suppose that for any integers 1 ≤ i ≤ n and 0 ≤ j < d(i), we choose an arbitrary filtration

G(i),j of V
(i)
j /V

(i)
j+1 supported by Z. We have explained in Section 5 how to construct a new

filtration G(i) of V (i) from G(i),j (0 ≤ j < d(i)). Let

G =
n⊗

i=1

G(i), G̃ =
⊕

λ
(1)
j1

+···+λ
(n)
jn

=β

n⊗

i=1

G(i),ji .
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From the construction we know that λG(lx) = λ
G̃
(l̃x). For all integers 1 ≤ i ≤ n and 0 ≤ j <

d(i), let r
(i)
j be the rank of V

(i)
j /V

(i)
j+1 over K. Using (7), the inequality (10) implies:

n∑

i=1

d(i)−1∑

j=0

r
(i)
j

r(i)
E[G(i),j ] − λ

G̃
(l̃x) ≥ c̃

n∑

i=1

d(i)−1∑

j=0

λ
(i)
j r

(i)
j

r(i)
E[G(i),j ],

n∑

i=1

d(i)−1∑

j=0

r
(i)
j

r(i)
E[G(i),j ] −

n∑

i=1

d(i)−1∑

j=0

c̃λ
(i)
j r

(i)
j

r(i)
E[G(i),j ] − λ

G̃
(l̃x) ≥ 0, (11)

where c̃ :=
c

(‖F (1)‖2 + · · · + ‖F (n)‖2)
1
2

is a strictly negative rational number. Choose a strictly

positive integer N divisible by all r(i) such that for any integers 1 ≤ i ≤ n and 0 ≤ j < d(i),

a
(i)
j := −

Nc̃λ
(i)
j

r(i)
is an integer. As the sequence (λ

(i)
j )0≤j<d(i) is strictly increasing, also is

a(i) := (a
(i)
j )0≤j<d(i) . With this notation the inequality (11) becomes

n∑

i=1

d(i)−1∑

j=0

Nr
(i)
j

r(i)
E[G(i),j ] +

n∑

i=1

d(i)−1∑

j=0

a
(i)
j r

(i)
j E[G(i),j ] −Nλ

G̃
(l̃x) ≥ 0. (12)

We are now able to establish an explicit version of Proposition 1.12 in [RR84] for product
of general linear groups. We will see that the explicite form of L is crucial in Section 7.

Proposition 6.6 Let π̃ : P(W̃∨) → SpecK be the canonical morphism and let

L̃ := O
W̃∨(N)⊗

( n⊗

i=1

d(i)−1⊗

j=0

π̃∗
(
Λr

(i)
j (V

(i)
j /V

(i)
j+1)

)⊗N/r(i))⊗
( n⊗

i=1

d(i)−1⊗

j=0

π̃∗
(
Λr

(i)
j (V

(i)
j /V

(i)
j+1)

)⊗a(i)
j

)
.

The rational point x̃ of P(W̃∨) is semistable for the action of G̃ relatively to the G-linear line

bundle L̃.

Proof. Let h be an arbitrary one parameter subgroup of G̃ corresponding to filtrations G(i),j .
By Proposition 6.2, Proposition 6.3, and the fact that µ(x̃, h, ·) is a homomorphism of groups,
we obtain

µ(x̃, h, L̃) = µ(x̃, h,O
W̃∨(N)) +

n∑

i=1

d(i)−1∑

j=0

(Nr(i)j
r(i)

+ a
(i)
j r

(i)
j

)
E[G(i),j ]

= −Nλ
G̃
(l̃x) +

n∑

i=1

d(i)−1∑

j=0

(Nr(i)j
r(i)

+ a
(i)
j r

(i)
j

)
E[G(i),j ] ≥ 0.

By Hilbert-Mumford’s criterion, the point x̃ is semistable by the action of G̃ relatively to L̃.
2

Finally we point out the following consequence of the inequality (11), which shall be useful.
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Proposition 6.7 The minimizing filtrations (F (1), · · · ,F (n)) satisfy

E[F (1)] = · · · = E[F (n)] = 0.

In other words, the equality
∑d(i)−1

j=0 a
(i)
j r

(i)
j = 0 holds, or equivalently, the equality

∑d(i)−1
j=0 λ

(i)
j r

(i)
j =

0 holds for any integer 1 ≤ i ≤ n.

Proof. Let (ui)1≤i≤n be an arbitrary sequence of integers. For all integers 1 ≤ i ≤ n and

0 ≤ j < d(i), let G(i),j be the filtration of V
(i)
j /V

(i+1)
j the measure associated to which is δui

.
Notice that in this case ν

G̃
= δu1+···+un

. The inequality (12) gives

n∑

i=1

d(i)−1∑

j=0

Nr
(j)
i ui
r(i)

+
n∑

i=1

d(i)−1∑

j=0

a
(i)
j r

(i)
j ui −N

n∑

i=1

ui =
n∑

i=1

ui

d(i)−1∑

j=0

a
(i)
j r

(i)
j ≥ 0.

Since (ui)1≤i≤n is arbitrary, we know that
∑d(i)−1

j=0 a
(i)
j r

(i)
j = 0, and therefore

∑d(i)−1
j=0 λ

(i)
j r

(i)
j =

0. 2

7 Upper bound for the degree of a Hermitian line sub-
bundle

In this section, we shall give an upper bound for the Arakelov degree of a Hermitian
line subbundle of a finite tensor product of Hermitian vector bundles. As explained in the
introduction, we shall use the results established in the previous section to reduce our problem
to the case with semistability condition (in geometric invariant theory sense), which has already
been discussed in Section 3. We point out that, in order to obtain the same estimation as (3)
in full generality, we should assume that all Hermitian vector bundles Ei are semistable, as
a price paid for removing the semistability condition (in geometric invariant theory sense) for
MK .

We denote by K a number field and by OK its integer ring. Let (E
(i)

)1≤i≤n be a family
of semistable Hermitian vector bundles on SpecOK . For each integer 1 ≤ i ≤ n, let r(i) be

the rank of E(i) and V (i) = E
(i)
K . Let E = E

(1) ⊗ · · · ⊗ E
(n)

and W = EK . We denote by
π : P(W∨) → SpecK the natural morphism. The algebraic group G := GLK(V (1))×K · · · ×K
GLK(V (n)) acts naturally on P(W∨). Let M be a Hermitian line subbundle of E and m be a
strictly positive integer which is divisible by all r(i)’s.

Proposition 7.1 For any Hermitian line subbundle M of E
(1) ⊗ · · · ⊗E

(n)
, one has

d̂eg(M) ≤
n∑

i=1

(
µ̂(E

(i)
) +

1

2
log(rkE(i))

)
.

Proof. We have proved that if MK is semistable for the action of G relatively to OW∨(m) ⊗
π∗

( ⊗n
i=1(Λ

r(i)V (i))⊗m/r
(i)

)
, where m is a strictly positive integer which is divisible by all r(i),

then the following inequality holds:

d̂eg(M) ≤
n∑

i=1

(
µ̂(Ei) +

1

2
log r(i)

)
.

If this hypothesis of semistability is not fulfilled, after Proposition 6.6, there exists two
strictly positive integers N and β, and for each integer 1 ≤ i ≤ n,
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1) a flag

D
(i) : V (i) = V

(i)
0 ) V

(i)
1 ) · · · ) V

(i)

d(i)
= 0

of V (i) corresponding to the sequence

E(i) = E
(i)
0 ) E

(i)
1 ) · · · ) E

(i)

d(i)
= 0

of saturated sub-OK-modules of E,

2) two strictly increasing sequence λ(i) = (λ
(i)
j )0≤j<d(i) and a(i) = (a

(i)
j )0≤j<d(i) of integers,

such that

i) N is divisible by all r(i)’s,

ii) for any integer 1 ≤ i ≤ n,
∑d(i)−1

j=0 a
(i)
j r

(i)
j = 0, where r

(i)
j = rk(V

(i)
j /V

(i)
j+1),

iii) the inclusion of M in E factorizes through
∑

λ
(1)
i1

+···λ
(n)
in

≥β

E
(1)
i1

⊗ · · · ⊗E
(n)
in

,

iv) the canonical image of MK in

W̃ :=
∑

λ
(1)
j1

+···+λ
(n)
jn

≥β

n⊗

i=1

V
(i)
ji

/ ∑

λ
(1)
j1

+···+λ
(n)
jn
>β

n⊗

i=1

V
(i)
ji

∼=
⊕

λ
(1)
j1

+···+λ
(n)
jn

=β

n⊗

i=1

(
V

(i)
ji
/V

(i)
ji+1

)
.

is non-zero, and is semistable for the action of the group

G̃ :=

n∏

i=1

d(i)−1∏

j=0

GL(V
(i)
j /V

(i)
j+1)

relatively to

O
W̃∨(N)⊗

( n⊗

i=1

d(i)−1⊗

j=0

π̃∗
(
Λr

(i)
j (V

(i)
j /V

(i)
j+1)

)⊗N/r(i))⊗
( n⊗

i=1

d(i)−1⊗

j=0

π̃∗
(
Λr

(i)
j (V

(i)
j /V

(i)
j+1)

)⊗a(i)
j

)
,

where π̃ : P(W̃∨) → SpecK is the canonical morphism.

Notice that
⊗d(i)−1

j=0

(
Λr

(i)
j (E

(i)

j /E
(i)

j+1)
)⊗a(i)

j is nothing other than L
a
(i)∨

D(i) defined in Section 4
(see Remark 4.2 and Proposition 6.7 infra).

Applying Theorem 3.2, one gets

d̂eg(M) ≤ 1

N

n∑

i=1

d(i)−1∑

j=0

N

r(i)
(
d̂eg(E

(i)

j ) − d̂eg(E
(i)

j+1)
)
− 1

N

n∑

i=1

d̂egL
a
(i)

D(i) +

n∑

i=1

d(i)−1∑

j=0

Nr
(i)
j /r(i) + r

(i)
j a

(i)
j

2N
log r

(i)
j

=

n∑

i=1

µ̂(E
(i)

) − 1

N

n∑

i=1

d̂egL
a
(i)

D(i) +

n∑

i=1

d(i)−1∑

j=0

Nr
(i)
j /r(i) + r

(i)
j a

(i)
j

2N
log r

(i)
j

≤
n∑

i=1

µ̂(E
(i)

) +

n∑

i=1

d(i)−1∑

j=0

Nr
(i)
j /r(i) + r

(i)
j a

(i)
j

2N
log r

(i)
j ,
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the last inequality is because E
(i)

’s are semistable (see Proposition 4.1 infra). The semistability

of the canonical image of MK implies that Nr
(i)
j /r(i) + r

(i)
j a

(i)
j ≥ 0 for any integer 1 ≤ i ≤ n.

Therefore

d̂eg(M) ≤
n∑

i=1

µ̂(E
(i)

) +
n∑

i=1

d(i)−1∑

j=0

Nr
(i)
j /r(i) + r

(i)
j a

(i)
j

2N
log r(i).

As for any integer 1 ≤ i ≤ n,
∑d(i)−1

j=0 r
(i)
j a

(i)
j = 0, we have proved the Proposition. 2

For any non-zero Hermitian vector bundle F on SpecOK we denote by ud̂eg(F ) the maximal
degree of line subbundles of F . We recall a result of J.-B. Bost and K. Künnemann [BK07]
comparing the maximal degree and the maximal slope of F which states as follows:

ud̂eg(F ) ≤ µ̂max(F ) ≤ ud̂eg(F ) +
1

2
log(rkF ) +

log |∆K |
2[K : Q]

. (13)

This is actually a variant of the first theorem of Minkowski. Using this inequality, Proposition
7.1 implies:

Corollary 7.2 The following inequality is verified:

µ̂max(E
(1) ⊗ · · · ⊗E

(n)
) ≤

n∑

i=1

(
µ̂(E

(i)
) + log(rkE(i))

)
+

log |∆K |
2[K : Q]

.

8 Proof of Theorem 1.1

We finally give the proof of Theorem 1.1.

Lemma 8.1 Let K be a number field and OK be its integer ring. Suppose given a finite
family (Ei)1≤i≤n of non-zero Hermitian vector bundles (non-necessarily semistable). Let E =
E1 ⊗ · · · ⊗En. Then the following inequality holds:

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

.

Proof. Let F be a sub-OK-module of E. By taking Harder-Narasimhan flags of Ei’s (cf.
[Bos96]) we obtain that there exists, for any 1 ≤ i ≤ n, a semistable subquotient F i/Gi of Ei
such that

1) µ̂(F i/Gi) ≤ µ̂max(Ei),

2) the homomorphism of inclusion from F to E factorise through F1 ⊗ · · · ⊗ Fn,

3) the canonical image of F in (F1/G1) ⊗ · · · ⊗ (Fn/Gn) does not vanish.

Combining with the slope inequality, Corollary 7.2 implies

µ̂min(F ) ≤
n∑

i=1

(
µ̂(F i/Gi) + log(rk(Fi/Gi))

)
+

log |∆K |
2[K : Q]

≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

.
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Since F is arbitrary, the proposition is proved. 2

Proof of Theorem 1.1 Let N ≥ 1 be an arbitrary integer, after Lemma 8.1, one has, in

considering E
⊗N

as E1 ⊗ · · · ⊗E1︸ ︷︷ ︸
N copies

⊗ · · · ⊗En ⊗ · · · ⊗En︸ ︷︷ ︸
N copies

µ̂max(E
⊗N

) ≤
n∑

i=1

N
(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2[K : Q]

On the other hand, it is clear that µ̂max(E
⊗N

) ≥ Nµ̂max(E). Therefore, one has

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
+

log |∆K |
2N [K : Q]

.

As N is arbitrary, we obtain by taking N → +∞,

µ̂max(E) ≤
n∑

i=1

(
µ̂max(Ei) + log(rkEi)

)
,

the theorem is thus proved.
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115–161, 1996. Séminaire Bourbaki, Vol. 1994/1995.
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cations Mathématiques. Institut de Hautes Études Scientifiques, (93):161–221, 2001.
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Mathématique. Académie des Sciences. Paris, 286(5):A247–A250, 1978.

[RR84] S. Ramanan and A. Ramanathan. Some remarks on the instability flag. The Tohoku
Mathematical Journal. Second Series, 36(2):269–291, 1984.

[Stu76] U. Stuhler. Eine bemerkung zur reduktionstheorie quadratischen formen. Archiv.
der Math., 27:604–610, 1976.

[Tot96] Burt Totaro. Tensor products in p-adic Hodge theory. Duke Mathematical Journal,
83(1):79–104, 1996.

[Wey97] Hermann Weyl. The classical groups. Princeton Landmarks in Mathematics. Prince-
ton University Press, Princeton, NJ, 1997. Their invariants and representations,
Fifteenth printing, Princeton Paperbacks.

21


