Maximal slope of tensor product of Hermitian vector bundles

Huayi Chen

To cite this version:

| Huayi Chen. Maximal slope of tensor product of Hermitian vector bundles. 2007. hal-00151961v1

HAL Id: hal-00151961
 https://hal.science/hal-00151961v1

Preprint submitted on 5 Jun 2007 (v1), last revised 2 Jan 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Maximal slope of tensor product of Hermitian vector bundles

Chen Huayi*

June 5, 2007

Abstract

We give an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. By Minkowski's theorem, we need to estimate the Arakelov degree of an arbitrary Hermitian line subbundle \bar{M} of the tensor product. In the case where the generic fiber of M is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of M. Otherwise we use an explicte version of a result of Ramanan and Ramanathan to reduce the general case to the former one.

1 Introduction

It is well known that on a projective and smooth curve over a field of characteristic 0 , the tensor product of two semistable vector bundles is still semistable. This result has been firstly proved by Narasimhan and Seshadri NS65 in the complex algebraic geometry framework by using analytic method. Then it has been reestablished by Ramanan and Ramanathan RR84 in the purely algebraic context, through the geometric invariant theory. Their method is based on a result of Kempf Kem78, which has also been independently obtained by Rousseau Rou78, generalizing the Hilbert-Mumford criterion MFK94 of semi-stability in the sense of geometric invariant theory. By reformulating the results of Kempf and Ramanan-Ramanathan, Totaro Tot96 (see also dS for a review) has given a new proof of a conjecture due to Fontaine Fon79, which had been firstly proved by Faltings Fal89] asserting that the tensor product of two semistable weakly admissible filtered isocristals is still semistable.

Let us go back to the case of vector bundles. The fact that the tensor product of two semistable vector bundles on a curve C over a field k of characteristic 0 is still semistable is equivalent to the fact that for any non-zero vector bundles E and F on C, we have $\mu_{\max }(E \otimes$ $F)=\mu_{\max }(E)+\mu_{\max }(F)$, where the maximal slope $\mu_{\max }$ of a non-zero vector bundle G over C is by definition the maximal value of slopes (that is to say, the quotient of the degree by the rank) of non-zero subbundles of G. When k is of characteristic positive, the above equality is not true in general (see Gie73 for a counter-example). Nevertheless, it is easy to prove that there exists a constant a which depends only on C such that

$$
\begin{equation*}
\mu_{\max }(E)+\mu_{\max }(F) \leq \mu_{\max }(E \otimes F) \leq \mu_{\max }(E)+\mu_{\max }(F)+a \tag{1}
\end{equation*}
$$

for any non-zero vector bundles E and F on C.

[^0]Hermitian vector bundles play in Arakelov geometry the role of vector bundles in algebraic geometry. Let K be a number field and \mathcal{O}_{K} be its integer ring. A Hermitian vector bundle $\bar{E}=(E, h)$ on Spec \mathcal{O}_{K} is by definition a projective \mathcal{O}_{K}-module of finite type E together with a family of Hermitian metric $h=\left(\|\cdot\|_{\sigma}\right)_{\sigma \in \Sigma_{\infty}}$, where Σ_{∞} is the set of all embedding of K into \mathbb{C}, and for any $\sigma \in \Sigma_{\infty},\|\cdot\|_{\sigma}$ is a Hermitian norm on $E \otimes_{\mathcal{O}_{K}, \sigma} \mathbb{C}$, subject to the condition that the data $\left(\|\cdot\|_{\sigma}\right)_{\sigma \in \Sigma_{\infty}}$ is invariant by the complex conjugation, namely for any $e \in E$, any $z \in \mathbb{C}$ and any $\sigma \in \Sigma_{\infty},\|e \otimes \bar{z}\|_{\bar{\sigma}}=\|e \otimes z\|_{\sigma}$. Similarly to the geometric case, one can define the (normalized) Arakelov degree of a Hermitian vector bundle \bar{E} on Spec \mathcal{O}_{K} as

$$
\widehat{\operatorname{deg}}_{n} \bar{E}=\frac{1}{[K: \mathbb{Q}]}\left(\log \#\left(E / \mathcal{O}_{K} s_{1}+\cdots+\mathcal{O}_{K} s_{r}\right)-\frac{1}{2} \sum_{\sigma \in \Sigma_{\infty}} \log \operatorname{det}\left(\left\langle s_{i}, s_{j}\right\rangle_{\sigma}\right)\right)
$$

where $\left(s_{1}, \cdots, s_{r}\right) \in E^{r}$ is an arbitrary element in E^{r} which defines a base of E_{K} over K. This definition does not depend on the choice of $\left(s_{1}, \cdots, s_{r}\right)$. For more details, see Bos96], Bos01, CL02, Bos04 and BK07. The slope of a non-zero Hermitian vector bundle \bar{E} on Spec \mathcal{O}_{K} is then defined to be the quotient $\widehat{\mu}(\bar{E}):=\widehat{\operatorname{deg}}_{n}(\bar{E}) / \operatorname{rk}(E)$. We say that a non-zero Hermitian vector bundle \bar{E} is semistable if the maximal slope $\widehat{\mu}_{\max }(\bar{E})$ of \bar{E}, defined as the maximal value of slopes of its non-zero Hermitian subbundles, equals to its slope. If \bar{E} is a non-zero Hermitian vector bundle on $\operatorname{Spec} \mathcal{O}_{K}$, Stuhler Stu76 and Grayson Gra76 have proved that there exists a unique Hermitian subbundle $\bar{E}_{\text {des }}$ of \bar{E} having $\widehat{\mu}_{\max }(\bar{E})$ as its slope, and containing all Hermitian subbundle \bar{F} of \bar{E} such that $\widehat{\mu}(\bar{F})=\widehat{\mu}_{\max }(\bar{E})$. Clearly \bar{E} is semistable if and only if $\bar{E}=\bar{E}_{\text {des }}$. If it is not the case, then $\bar{E}_{\text {des }}$ is said to be the Hermitian subbundle which destabilize \bar{E}. In a lecture at Oberwolfach, J.-B. Bost Bos97 conjectured that the tensor product of two semistable Hermitian vector bundles on the spectrum of an algebraic integer ring is semistable. This conjecture is equivalent to the assertion that for any non-zero Hermitian vector bundle \bar{E} and \bar{F} on Spec \mathcal{O}_{K},

$$
\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F})=\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})
$$

It is clear that we always have the inequality $\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F}) \geq \widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})$ since

$$
\widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})=\widehat{\mu}\left(\bar{E}_{\mathrm{des}}\right)+\widehat{\mu}\left(\bar{F}_{\mathrm{des}}\right)=\widehat{\mu}\left(\bar{E}_{\mathrm{des}} \otimes \bar{F}_{\mathrm{des}}\right) \leq \widehat{\mu}_{\max }(\bar{E} \otimes \bar{F})
$$

But the inverse inequality remains always open. Several special cases of the conjecture have been proved and some estimations of type (11) have been obtained with error terms depending on the ranks of the vector bundles and on the number field K. In the following, we resume some known results on this conjecture.

1) De Shalit and Parzanovski dSP06 have proved that if \bar{E} and \bar{F} are two semistable Hermitian vector bundles on Spec \mathbb{Z} such that $\operatorname{rk} E+\operatorname{rk} F \leq 5$, then $\bar{E} \otimes \bar{F}$ is semistable.
2) In Bos96] (see also Gra00]), using the comparison of a Hermitian vector bundle to a direct sum of Hermitian line bundles, J.-B. Bost has proved that

$$
\widehat{\mu}_{\max }\left(\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+3 \mathrm{rk} E_{i} \log \left(\mathrm{rk} E_{i}\right)\right)
$$

for any family of non-zero Hermitian vector bundles $\left(\bar{E}_{i}\right)_{i=1}^{n}$ on the spectrum of an algebraic integer ring.
3) Recently J.-B. Bost and K. Künnemann BK07 have proved that, if K is a number field and \bar{E} and \bar{F} are two non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$, then

$$
\widehat{\mu}_{\max }(\bar{E} \otimes \bar{F}) \leq \widehat{\mu}_{\max }(\bar{E})+\widehat{\mu}_{\max }(\bar{F})+\frac{1}{2}(\log \mathrm{rk} E+\log \mathrm{rk} F)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]},
$$

where Δ_{K} is the discriminant of K.
We state the main result of this article as follows:
Theorem 1.1 Let K be a number field and \mathcal{O}_{K} be its integer ring. If $\left(\bar{E}_{i}\right)_{i=1}^{n}$ is a family of non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$, then

$$
\begin{equation*}
\widehat{\mu}_{\max }\left(\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\mathrm{rk} E_{i}\right)\right) . \tag{2}
\end{equation*}
$$

The idea goes back to an article of J.-B. Bost Bos94 inspired by Bogomolov Ray81], Gieseker [Gie77] and Cornalba-Harris CH88]. In an article of Gasbarri [Gas00 appears also the similar idea. After the first theorem of Minkowski, we reduce our problem to finding an upper bound for the Arakelov degree of an arbitrary hermitien line subbundle \bar{M} of $\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$. In the case where M_{K} is semistable (in the sense of geometric invariant theory) for the action of $\mathbb{G L}\left(E_{1, K}\right) \times \cdots \times \mathbb{G L}\left(E_{n, K}\right)$, the classical invariant theory gives invariant polynomials with coefficients in \mathbb{Z} whose Archimedian norms are "small". The general case can be reduced to the former one using an explicit version of a result of Ramanan-Ramanathan RR84.

The structure of this article is as follows. In the second section we recall the first principal theorem in classical invariant theory and discuss some generalizations in several vector spaces case. We then establish in the third section an upper bound for the Arakelov degree of a Hermitian line subbundle with semistable hypothesis. In the fourth section, we give a criterion of semi-stability (for Hermitian vector bundles) which is an arithmetic analogue of a result of Bogomolov. We recall in the fifth section some basic notions for filtrations in the category of vector spaces. Then in the sixth section, we state an explicte version of a result of RamananRamanathan in our context and, following the methode of Totaro, give a proof for it. In the seventh section, we explain how to use the result in previous section to reduce the majoration of the Arakelov degree of an arbitrary Hermitian line subbundle to the case with semistability hypothesis, which has already been discussed in the third section. Finally, in the eighth and the last section, we give the proof of Theorem 1.1.

Acknowlegements. The result presented here is part of my doctorial thesis [Che06], supervised by J.-B. Bost. The ideas in this article are largely inspired by his article Bos94 and his personal notes. I would like to thank him deeply for his instruction and his sustained encouragement. During my visit in Institut Joseph Fourier, E. Gaudron pointed out to me that the method in this article, combining with his recent result [Gau07], leads to an estimation, which is similar to (2), for the tensor product of Adelic vector bundles. I am very grateful to him for the discussions and for his suggestions on the preparation of this article.

2 Recall on invariant theory

In this section we recall some known results in classical invariant theory. We fix K to be a field of characteristic 0 .

For any finite dimensional vector space V over K and any strictly positive integer u, we denote by $J_{u}: \operatorname{End}_{K}(V)^{\otimes u} \rightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right)$ the K-linear homomorphism (of vector spaces)
which sends the tensor product $T_{1} \otimes \cdots \otimes T_{u}$ of u elements in $\operatorname{End}_{K}(V)$ to their tensor product as endomorphism of $V^{\otimes u}$. The mapping J_{u} is actually a homomorphism of K-algebras. Furthermore, as homomorphism of vector spaces, J_{u} can be written as the composition of following natural isomorphisms:

$$
\operatorname{End}_{K}(V)^{\otimes u} \longrightarrow\left(V^{\vee} \otimes V\right)^{\otimes u} \longrightarrow\left(V^{\vee}\right)^{\otimes u} \otimes V^{\otimes u} \longrightarrow\left(V^{\otimes u}\right)^{\vee} \otimes V^{\otimes u} \longrightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right),
$$

so is itself an isomorphism. Moreover, there exists an action of the symmetric group \mathfrak{S}_{u} on $V^{\otimes u}$ by permuting the factors. This representation of \mathfrak{S}_{u} defines a homomorphism from the group algebra $K\left[\mathfrak{S}_{u}\right]$ to $\operatorname{End}_{K}\left(V^{\otimes u}\right)$. The elements of \mathfrak{S}_{u} acts by conjugation on $\operatorname{End}_{K}\left(V^{\otimes u}\right)$. If we identify $\operatorname{End}_{K}\left(V^{\otimes u}\right)$ to $\operatorname{End}_{K}(V)^{\otimes u}$ by the isomorphism J_{u}, then the corresponding \mathfrak{S}_{u}-action is just the permutation of factors in tensor product. Finally the group $\mathrm{GL}_{K}(V)$ acts naturally on $V^{\otimes u}$.

Lemma 2.1 If we denote by $\rho: \mathrm{GL}_{K}(V) \rightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right)$ the natural representation of $\mathrm{GL}_{K}(V)$ on $V^{\otimes u}$, then the \mathfrak{S}_{u}-invariant subalgebra $\operatorname{End}_{K}\left(V^{\otimes u}\right)^{\mathfrak{S}_{u}}$ is generated by the image of ρ.

Proof. The action of an arbitrary element in \mathfrak{S}_{u} by permuting factors and the action of an arbitrary element in $\mathrm{GL}_{K}(V)$ on $V^{\otimes u}$ commute. Hence $\operatorname{End}_{K}\left(V^{\otimes u}\right)^{\mathfrak{S}_{u}}$ contains the subalgebra of $\operatorname{End}_{K}\left(V^{\otimes u}\right)$ generated by the image of ρ. Therefore it suffices to prove the inverse inclusion. As K is of characteristic $0, \operatorname{End}_{K}\left(V^{\otimes u}\right)^{\mathfrak{S}_{u}} \cong\left(\operatorname{End}_{K}(V)^{\otimes u}\right)^{\mathfrak{S}_{u}} \cong S^{u} \operatorname{End}_{K}(V)$. Since $S^{u} \operatorname{End}_{K}(V)$ is generated as vector space over K by the elements of the form $g^{\otimes u}\left(g \in \operatorname{End}_{K}(V)\right)$, it is also generated by $g^{\otimes u}\left(g \in \mathrm{GL}_{K}(V)\right)$ since $\mathrm{GL}_{K}(V)$ is Zariski dense in $\operatorname{End}_{K}(V)$ (K being of characteristic 0).

We recall below the "first principal theorem" of classical invariant theory (cf. Wey97 Chapter III, see also ABP73 Appendix 1).

Theorem 2.2 Let V be a finite dimensional vector space over K and let $u, v \geq 1$ be two integers. If T is a non-zero elements in $V^{\otimes u} \otimes V^{\vee \otimes v}$, which is invariant under the action of $\mathrm{GL}_{K}(V)$, then $u=v$, and T is a linear combination of permutations (here we identify $V^{\otimes u} \otimes V^{\vee \otimes u}$ with $\left.\operatorname{End}_{K}\left(V^{\otimes u}\right)\right)$.

Proof. Let $a \in K^{\times}$be an element which is not root of unity (this is always possible since K is of characteristic 0) and let $g=a \operatorname{Id}_{V} \in \mathrm{GL}_{K}(V)$. The action of g on $V^{\otimes u} \otimes V^{\mathrm{V} \otimes v}$ is a^{u-v} Id. If there exists a non-zero vector in $V^{\otimes u} \otimes V^{\vee \otimes v}$ which is invariant by the action of $\mathrm{GL}_{K}(V)$, then $a^{u-v}=1$. Therefore $u=v$ since a is not root of unity.

Let $A=\operatorname{End}_{K}\left(V^{\otimes u}\right)$ and let B be the image of $K\left[\mathfrak{S}_{u}\right]$ in A by the representation of permutations, which is a subalgebra of A. The K-algebra A is simple, central and of finite rank over K. the sub- K-algebra B is semistable. After Lemma 2.1, the commutant $B^{\prime}=\operatorname{End}_{K}\left(V^{\otimes u}\right)^{\mathfrak{S}_{u}}$ of B is the subalgebra of A generated by the image of the representation $\rho: \mathrm{GL}_{K}(V) \rightarrow \operatorname{End}_{K}\left(V^{\otimes u}\right)$. By the bicommutant theorem (see for example Jac89, Lan02 or Pie82), we have $B^{\prime \prime}=B$. Therefore, the endomorphisms of $V^{\otimes u}$ which are invariant by the action of $\mathrm{GL}_{K}(V)$ lie in B, i.e., are linear combination of permutations.

Let $\left(V_{i}\right)_{1 \leq i \leq n}$ be a family of finite dimensional non-zero vector space over K. Let $\mathbf{u}=$ $\left(u_{i}\right)_{1 \leq i \leq n}$ be a family of strictly positive integers. We denote by G the group $\mathrm{GL}_{K}\left(V_{1}\right) \times$ $\cdots \times \mathrm{GL}_{K}\left(V_{n}\right)$ and by $\mathfrak{S}_{\mathbf{u}}$ the product $\mathfrak{S}_{u_{1}} \times \cdots \times \mathfrak{S}_{u_{n}}$ of symmetric groups. The group algebra $K\left[\mathfrak{S}_{\mathbf{u}}\right]$ is isomorphic to $K\left[\mathfrak{S}_{u_{1}}\right] \otimes_{K} \cdots \otimes_{K} K\left[\mathfrak{S}_{u_{n}}\right]$. On the other hand, we have a natural isomorphism of K-algebras from $\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right)$ to $\operatorname{End}_{K}\left(V_{1}\right)^{\otimes u_{1}} \otimes_{K}$ $\cdots \otimes_{K} \operatorname{End}_{K}\left(V_{n}\right)^{\otimes u_{n}}$. The group G acts naturally on $V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}$. We denote by
$\rho: G \rightarrow \operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right)$ the corresponding representation. Finally the group $\mathfrak{S}_{\mathbf{u}}$ acts on $V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}$ by permutating tensor factors.

Lemma 2.3 The algebra $\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right)^{\mathfrak{S}_{u}}$ is generated by the image of ρ.
Proof. For any integer $1 \leq i \leq n$, we denote by C_{i} the canonical image of $K\left[\mathfrak{S}_{u_{i}}\right]$ in $\operatorname{End}_{K}\left(V_{i}^{\otimes u_{i}}\right)$. The algebra $\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{u_{n}}\right)^{\mathfrak{S}_{u}}$ is the commutant of the canonical image of $K\left[\mathfrak{S}_{\mathbf{u}}\right]$ in $\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right) \cong \operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}}\right) \otimes \cdots \otimes \operatorname{End}_{K}\left(V_{n}^{\otimes u_{n}}\right)$, which is identified with $C_{1} \otimes \cdots \otimes C_{n}$. As the commutant of tensor product equals to the tensor product of commutants, we have

$$
\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right)^{\mathfrak{S}_{\mathbf{u}}} \cong C_{1}^{\prime} \otimes \cdots \otimes C_{n}^{\prime}
$$

where C_{i}^{\prime} is the commutant of C_{i}. After Lemma 2.1, the sub- K-algebra C_{i}^{\prime} of $\operatorname{End}_{K}\left(V_{i}^{\otimes u_{i}}\right)$ is generated by the image of $\mathrm{GL}_{K}\left(V_{i}^{\otimes u_{i}}\right)$. Therefore $C_{1}^{\prime} \otimes \cdots \otimes C_{n}^{\prime}$ is generated by the image of G.

Theorem 2.4 With the notations above, if $\mathbf{v}=\left(v_{i}\right)_{1 \leq i \leq n}$ is a family of strictly positive integers and if T is a non-zero element in $U:=V_{1}^{\otimes u_{1}} \otimes V_{1}^{\vee} \otimes v_{1} \otimes \cdots \otimes V_{n}^{\otimes u_{n}} \otimes V_{n}^{\vee} \otimes v_{n}$ which is invariant by the action of G, then $\mathbf{u}=\mathbf{v}$, and T is a linear combination of elements in $\mathfrak{S}_{\mathbf{u}}$.

Proof. Let $a \in K^{\times}$be an element which is not root of unity. For any integer $1 \leq i \leq n$, the action of

$$
\operatorname{Id}_{V_{1}} \times \cdots \times \operatorname{Id}_{V_{i-1}} \times a \operatorname{Id}_{V_{i}} \times \operatorname{Id}_{V_{i+1}} \times \cdots \times \operatorname{Id}_{V_{n}}
$$

on U is the homothetic transformation by $a^{u_{i}-v_{i}}$. As U has a non-zero vector invariant by G, we know that $a^{u_{i}-v_{i}}=1$ and hence $u_{i}=v_{i}$. Therefore we can identify U with the underlying vector space of $A:=\operatorname{End}_{K}\left(V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}\right)$. Let B be the canonical image of $K\left[\mathfrak{S}_{\mathbf{u}}\right]$ by the representation of permutations, which is a sub- K-algebra of A. The algebra A is simple, central and of finite rank over K. The subalgebra B of A is semi-simple since it is a quotient of the algebra of a finite group. After the bicommutant theorem, we have $B^{\prime \prime}=B$. Hence the endomorphisms in $V_{1}^{\otimes u_{1}} \otimes \cdots \otimes V_{n}^{\otimes u_{n}}$ which are invariant by the action of G lie in B, so are linear combinations of elements in $\mathfrak{S}_{\mathbf{u}}$.

Let G be an algebraic group over $\operatorname{Spec} K$ and X be a projective variety over $\operatorname{Spec} K$. Suppose that G acts on X and that L is an ample G-linear line bundle on X. We say that a rational point x of X is semistable for the action of G relatively to L if there exists an integer $D \geq 1$ and a section $s \in H^{0}\left(X, L^{\otimes D}\right)$ invariant under the action of G such that x lies in the open subset of X defined by the non-vanishing of s. Clearly x is semistable for the action of G relatively to L if and only if it is semistable for the action of G relatively to any strictly positive tensor power of L.

Let $\left(V_{i}\right)_{1 \leq i \leq n}$ be a family of finite dimensional non-zero vector space over K, Ξ be a finite family of non-identically zero mappings from $\{1, \cdots, n\}$ to \mathbb{N} and $\left(b_{i}\right)_{1 \leq i \leq n}$ be a family of integers. We denote by W the vector space $\bigoplus_{\alpha \in \Xi} \bigotimes_{i=1}^{n} V_{i}^{\otimes \alpha(i)}$ and by G the algebraic group $\mathbb{G L}_{K}\left(V_{1}\right) \times_{K} \cdots \times_{K} \mathbb{G L}_{K}\left(V_{n}\right)$. The group G acts naturally on W. Let L be the $G(K)$-module $\left(\operatorname{det} V_{1}\right)^{\otimes b_{1}} \otimes \cdots \otimes\left(\operatorname{det} V_{n}\right)^{\otimes b_{n}}$. For any integer $D \geq 1$ and any element $\alpha=\left(\alpha_{j}\right)_{1 \leq j \leq D} \in \Xi^{D}$, let

$$
\operatorname{pr}_{\alpha}: W^{\otimes D} \longrightarrow V_{1}^{\otimes\left(\alpha_{1}(1)+\cdots+\alpha_{D}(1)\right)} \otimes \cdots \otimes V_{n}^{\otimes\left(\alpha_{1}(n)+\cdots+\alpha_{D}(n)\right)}
$$

be the canonical projection. For any integer $1 \leq i \leq n$, let r_{i} be the rank of V_{i} over K. Finally let $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K be the canonical morphism.

Theorem 2.5 With the notations above, if m is a strictly positive integer and if R is a vector space of rank 1 of W (considered as a rational point of $\mathbb{P}\left(W^{\vee}\right)$) which is semistable for the action of G relatively to $\mathcal{O}_{W} \vee(m) \otimes \pi^{*} L$, then there exists an integer $D \geq 1$ and a family $\alpha=\left(\alpha_{j}\right)_{1 \leq j \leq m D}$ of elements in Ξ such that, by noting $A=\alpha_{1}+\cdots+\alpha_{m D}$, one has $A(i)=D b_{i} r_{i}$ for any $1 \leq i \leq n$ (this implies in particular that $b_{i} \geq 0$ for any $1 \leq i \leq n$). Furthermore, there exists an element $\sigma \in \mathfrak{S}_{a(1)} \times \cdots \times \mathfrak{S}_{a(n)}$ such that the composition of homomorphisms

does not vanish, where the first arrow is induced by the canonical inclusion of $R^{\otimes n D}$ in $W^{\otimes n D}$.
Proof. Since R is semistable for the action of G relatively to $\mathcal{O}_{W^{\vee}}(m) \otimes \pi^{*} L$, there exists an integer $D \geq 1$ and an element $s \in S^{D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ which is invariant by the action of $G(K)$ such that the composition of homomorphisms

$$
R^{\otimes m D} \otimes L^{\vee \otimes D} \longrightarrow \Gamma^{m D}(W) \otimes L^{\vee \otimes D} \xrightarrow{s} K
$$

does not vanish, the first arrow being the canonical inclusion. Since $K[G(K)]$ is semisimple, $S^{m D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ is a direct factor (as $G(K)$-module) of $\left(W^{\vee}\right)^{\otimes m D} \otimes L^{\otimes D}$. Let $s^{\prime} \in W^{\vee \otimes m D} \otimes$ $L^{\otimes D}$ be an element invariant by the action of $G(K)$, whose class in $S^{m D}\left(W^{\vee}\right) \otimes L^{\otimes D}$ coincides with s. There then exists $\alpha=\left(\alpha_{j}\right)_{1 \leq j \leq m D} \in \Xi^{D}$ such that the composition

$$
R^{\otimes m D} \otimes L^{\vee \otimes D} \longrightarrow W^{\otimes m D} \otimes L^{\vee \otimes D} \xrightarrow{\mathrm{pr}_{\alpha} \otimes \mathrm{Id}} V_{1}^{\otimes A(1)} \otimes \cdots \otimes V_{n}^{\otimes A(n)} \otimes L^{\vee \otimes D} \xrightarrow{s_{\alpha}^{\prime}} K
$$

is non-zero, where $A=\alpha_{1}+\cdots+\alpha_{m D}$ and s_{α}^{\prime} is the component of index α of s^{\prime}. Choose a preimage $s_{\alpha}^{\prime \prime}$ of s_{α}^{\prime} in $V_{1}^{\vee \otimes A(1)} \otimes \cdots \otimes V_{n}^{\vee \otimes A(n)} \otimes V_{1}^{\otimes D b_{1} r_{1}} \otimes \cdots \otimes V_{n}^{\otimes D b_{n} r_{n}}$ which is invariant by $G(K)$. After Theorem 2.4, we obtain that $A(i)=D b_{i} r_{i}$ for any $1 \leq i \leq n$, and that $s_{\alpha}^{\prime \prime}$ is a linear combination of permutations. Therefore the theorem is proved.

3 Upper bound for the degree of a Hermitian line subbundle with hypothesis of semi-stability

Let K be a number field and \mathcal{O}_{K} be its integer ring. Consider a family $\left(\bar{E}_{i}\right)_{1 \leq i \leq n}$ of non-zero Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$. Let Ξ be a non-empty and finite family of non-identically zero mappings from $\{1, \cdots, n\}$ to \mathbb{N}. We define a new Hermitian vector bundle over $\operatorname{Spec} \mathcal{O}_{K}$ as follows

$$
\bar{E}:=\bigoplus_{\alpha \in \Xi} \bar{E}_{1}^{\otimes \alpha(1)} \otimes \cdots \otimes \bar{E}_{n}^{\otimes \alpha(n)}
$$

In this section, we shall use the ideas in Bos94 to obtain an upper bound for the Arakelov degree of a Hermitian line subbundle \bar{M} of \bar{E} under the hypothesis of semi-stability (in geometric invariant theory sense) for M_{K}. This upper bound is crucial because, as we shall see
later, the general case can be reduced to this special one through an argument of Ramanan and Ramanathan.

For any integer $1 \leq i \leq n$, let r_{i} be the rank of E_{i} and let V_{i} be the vector space $E_{i, K}$. Let $W=E_{K}$ and $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K be the canonical morphism. We denote by G the algebraic group $\mathbb{G}_{K}\left(V_{1}\right) \times \cdots \times \mathbb{G}_{K}\left(V_{n}\right)$ which acts naturally on $\mathbb{P}\left(W^{\vee}\right)$. Clearly we have $W=\bigoplus_{\alpha \in \Xi} \bigotimes_{i=1}^{n} V_{i}^{\alpha(i)}$. Let $\left(b_{i}\right)_{1 \leq i \leq n}$ be a family of strictly positive integers such that r_{i} divides b_{i}. Finally let

$$
\bar{L}=\left(\Lambda^{r_{1}} \bar{E}_{1}\right)^{\otimes b_{1} / r_{1}} \otimes \cdots\left(\Lambda^{r_{n}} \bar{E}_{n}\right)^{\otimes b_{n} / r_{n}} .
$$

Lemma 3.1 Let H be a Hermitian space of dimension $d>0$. The norm of the homomorphism $\operatorname{det}: H^{\otimes d} \rightarrow \Lambda^{d} H$ equals to $\sqrt{d!}$.

Proof. In fact, the homomorphism det can be written as d ! orthogonal vectors of norm 1 in $H^{\vee \otimes d}$. So its norm is $\sqrt{d!}$.

Theorem 3.2 With the notations above, if $m \geq 1$ is an integer and if \bar{M} is a Hermitian line subbundle of \bar{E} such that M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W} \vee(m) \otimes \pi^{*} L_{K}$, then

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \frac{1}{m} \widehat{\operatorname{deg}}(\bar{L})+\frac{1}{2 m} \sum_{i=1}^{r} b_{i} \log \left(\operatorname{rk} E_{i}\right)=\sum_{i=1}^{n} \frac{b_{i}}{m}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log \left(\operatorname{rk} E_{i}\right)\right) .
$$

Proof. Let $R=M_{K}$. With the notations of Theorem 2.5, using the slope inequality (cf. Bos96 Appendix) and Lemma 3.1, we get

$$
\begin{aligned}
& m D \widehat{\operatorname{deg}}(\bar{M})-\widehat{\operatorname{deg}}(\bar{L})=m D \widehat{\operatorname{deg}}(\bar{M})-\sum_{i=1}^{n} D b_{i} \widehat{\mu}\left(\bar{E}_{i}\right) \\
\leq & \sum_{i=1}^{n} \frac{A(i) \log \left(r_{i}!\right)}{2 r_{i}}=\sum_{i=1}^{n} \frac{D b_{i} \log \left(r_{i}!\right)}{2 r_{i}} \leq \frac{1}{2} D \sum_{i=1}^{n} b_{i} \log r_{i},
\end{aligned}
$$

where we have used the evident estimation $r!\leq r^{r}$ in the last inequality. If we divide the inequality by $m D$, we obtain

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \frac{1}{m} \widehat{\operatorname{deg}}(\bar{L})+\frac{1}{2 m} \sum_{i=1}^{n} b_{i} \log r_{i}=\sum_{i=1}^{n} \frac{b_{i}}{m}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{\log r_{i}}{2}\right)
$$

Let m be a strictly positive integer which is divisible by all r_{i}. If we apply Theorem 3.2 to the special case where Ξ contains a single mapping α such that $\alpha(i)=1$ for any $i \in\{1, \cdots, n\}$, in other words, $\bar{E}=\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$, and where $b_{i}=m$ for any $1 \leq i \leq n$, we get the following upper bound:

Corollary 3.3 If \bar{M} is a Hermitian line subbundle of $\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$ such that M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W} \vee(m) \otimes \pi^{*} L_{K}$, then we have

$$
\begin{equation*}
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log \left(\mathrm{rk} E_{i}\right)\right) \tag{3}
\end{equation*}
$$

4 A criterion of semi-stability (for Hermitian vector bundles)

We shall give a semi-stability criterion for Hermitian vector bundles, which is the arithmetic analogue of a result due to Bogomolov in geometric framework (see Ray81).

Let \bar{E} be a non-zero Hermitian vector bundle over $\operatorname{Spec} \mathcal{O}_{K}$ and let $V=E_{K}$. We denote by r its rank. If $\mathscr{D}: V=V_{0} \supsetneq V_{1} \supsetneq \cdots \supsetneq V_{d}=0$ is a flag of V, it induces a strictly decreasing sequence of saturated sub- \mathcal{O}_{K}-modules $E=E_{0} \supsetneq E_{1} \supsetneq \cdots \supsetneq E_{d}=0$ of E. For any integer $0 \leq j<d$, let r_{j} be the rank of E_{j} / E_{j+1}. If $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d}$ is an element in $r \mathbb{Z}^{d}$, we denote by $\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}$ the Hermitian line bundle (on $\operatorname{Spec} \mathcal{O}_{K}$)

$$
\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}:=\bigotimes_{j=0}^{d-1}\left(\left(\Lambda^{r_{j}}\left(\bar{E}_{j} / \bar{E}_{j+1}\right)\right)^{\vee \otimes a_{j}} \otimes\left(\Lambda^{r} \bar{E}\right)^{\otimes \frac{r_{j} a_{j}}{r}}\right)
$$

Proposition 4.1 The Hermitian vector bundle \bar{E} is semistable (resp. stable) if and only if for any integer $d \geq 1$, any flag \mathscr{D} of length d of V, and any strictly increasing sequence $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d}$ of integers in $r \mathbb{Z}^{d}$, one has $\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right) \geq 0$ (resp. $\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)>0$).
Proof. " \Longrightarrow ": By definition, one has

$$
\begin{aligned}
\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{O}}^{\mathbf{a}}\right) & =-\sum_{j=0}^{d-1} a_{j}\left[-\frac{\left.\operatorname{rk}\left(E_{j}\right)-\operatorname{rk}\left(E_{j+1}\right) \widehat{\operatorname{deg}}(\bar{E})+\widehat{\operatorname{deg}}\left(\bar{E}_{j}\right)-\widehat{\operatorname{deg}}\left(\bar{E}_{j+1}\right)\right]}{r}\right. \\
& =-\sum_{j=0}^{d-1} a_{j}\left[\operatorname{rk}\left(E_{j}\right)\left(\widehat{\mu}\left(\bar{E}_{j}\right)-\widehat{\mu}(\bar{E})\right)-\operatorname{rk}\left(E_{j+1}\right)\left(\widehat{\mu}\left(\bar{E}_{j+1}\right)-\widehat{\mu}(\bar{E})\right)\right] \\
& =-\sum_{j=1}^{d-1}\left(a_{j}-a_{j-1}\right) \operatorname{rk}\left(E_{j}\right)\left(\widehat{\mu}\left(\bar{E}_{j}\right)-\widehat{\mu}(\bar{E})\right) .
\end{aligned}
$$

If \bar{E} is semistable (resp. stable), then for any integer $1 \leq j<d$, one has $\widehat{\mu}\left(\bar{E}_{j}\right) \leq \widehat{\mu}(\bar{E})$ (resp. $\widehat{\mu}\left(\bar{E}_{j}\right)<\widehat{\mu}(\bar{E})$). Hence $\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right) \geq 0$ (resp. $\left.\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)>0\right)$.
$" \Longleftarrow "$: Let E_{1} be a saturated sub- \mathcal{O}_{K}-module of E. Consider the flag $\mathscr{D}: V \supsetneq E_{1, K} \supsetneq 0$ and the integer sequence $\mathbf{a}=(0, r)$. One has

$$
\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)=r \operatorname{rk}\left(E_{1}\right)\left(\widehat{\mu}(\bar{E})-\widehat{\mu}\left(\bar{E}_{1}\right)\right) \geq 0 \quad\left(\text { resp. } \widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}\right)=r \operatorname{rk}\left(E_{1}\right)\left(\widehat{\mu}(\bar{E})-\widehat{\mu}\left(\bar{E}_{1}\right)\right)>0\right)
$$

Therefore $\widehat{\mu}\left(\bar{E}_{1}\right) \leq \widehat{\mu}(\bar{E})$ (resp. $\widehat{\mu}\left(\bar{E}_{1}\right)<\widehat{\mu}(\bar{E})$). As E_{1} is arbitrary, the Hermitian vector bundle \bar{E} is semistable (resp. stable).

Remark 4.2 If $\mathbf{a}=\left(a_{j}\right)_{0 \leq j<d}$ is a strictly increasing sequence of integers (not necessarily in $\left.r \mathbb{Z}^{d}\right)$ satisfying $\sum_{j=0}^{d-1} r_{j} a_{j}=0$, then $\overline{\mathscr{L}}_{\mathscr{D}}^{\mathbf{a}}$ is well defined and equals to $\bigotimes_{j=0}^{d-1}\left(\Lambda^{r_{j}}\left(\bar{E}_{j} / \bar{E}_{j+1}\right)\right)^{\vee \otimes a_{j}}$. The semi-stability of \bar{E} implies also $\widehat{\operatorname{deg}}\left(\overline{\mathscr{L}}_{\mathscr{D}}^{\mathrm{a}}\right) \geq 0$.

5 Filtrations of vector spaces

In this section, we introduce some basic notations and results on \mathbb{R}-filtrations of vector spaces, which we shall use in the sequel (see Che06 or Che07 for filtrations in general categories).

Let K be a (commutative) field and V be a vector space of finite rank over K. We call (decreasing) \mathbb{R}-filtration of V any family $\mathcal{F}=\left(\mathcal{F}_{\lambda} V\right)_{\lambda \in \mathbb{R}}$ of subspaces of V such that $\mathcal{F}_{\lambda} V \supset$ $\mathcal{F}_{\lambda^{\prime}} V$ for $\lambda \leq \lambda^{\prime}$. In this article, we suppose that all filtrations are separated (i.e., $\mathcal{F}_{\lambda} V=0$ for λ sufficiently positive), exhaustive (i.e., $\mathcal{F}_{\lambda} V=V$ for λ sufficiently negative) and left continuous (i.e., the function $x \mapsto \operatorname{rk}_{K}\left(\mathcal{F}_{x} V\right)$ on \mathbb{R} is left continuous). A filtration \mathcal{F} of V is equivalent to the data of a flag

$$
V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \cdots \supsetneq V_{d}=0
$$

of V together with a strictly increasing sequence of real numbers $\left(\lambda_{i}\right)_{0 \leq i<d}$. In fact, we have the relation $\mathcal{F}_{\lambda} V=\bigcup_{\lambda_{i} \geq \lambda} V_{i}$. We denote by $\mathbf{F i l}_{V}$ the set of all filtrations of V. If \mathcal{F} is a filtration of V, we define a function $\lambda_{\mathcal{F}}: V \rightarrow \mathbb{R} \cup\{+\infty\}$ such that $\lambda_{\mathcal{F}}(x)=\sup \left\{a \in \mathbb{R} \mid x \in \mathcal{F}_{a} V\right\}$. The function $\lambda_{\mathcal{F}}$ takes finite value unless at $x=0$.

Suppose that V is non-zero. If \mathcal{F} is a filtration of V, we denote by $\nu_{\mathcal{F}}$ and we call the probability measure associated to \mathcal{F} the unique Borel measure on \mathbb{R} such that

$$
\nu_{\mathcal{F}}\left(\left[x, y[)=\frac{\mathrm{rk}_{K}\left(\mathcal{F}_{y} V\right)-\mathrm{rk}_{K}\left(\mathcal{F}_{x} V\right)}{\mathrm{rk}_{K} V} .\right.\right.
$$

Let Z be a subset of \mathbb{R}. We say that the filtration \mathcal{F} is supported by Z if $\operatorname{supp}\left(\nu_{\mathcal{F}}\right) \subset Z$. We denote by $\mathbf{F i l}_{V}^{Z}$ the set of all filtrations of V supported by Z. We define the expectation of \mathcal{F} to be $\mathbb{E}[\mathcal{F}]:=\int_{\mathbb{R}} x \mathrm{~d} \nu_{\mathcal{F}}(x)$. If \mathcal{F} corresponds to the flag

$$
V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \cdots \supsetneq V_{d}=0
$$

together with the sequence $\left(\lambda_{i}\right)_{0 \leq i<d}$, then

$$
\nu_{\mathcal{F}}=\sum_{i=0}^{d-1} \frac{\operatorname{rk}_{K}\left(V_{i} / V_{i+1}\right)}{\operatorname{rk}_{K} V} \delta_{\lambda_{i}}
$$

where δ_{x} is the Dirac measure at x. If $\mathbf{e}=\left(e_{1}, \cdots, e_{r}\right)^{T}$ is a base of V, we define $\nu_{\mathcal{F}, \mathbf{e}}$ to be the Borel measure

$$
\nu_{\mathcal{F}, \mathrm{e}}:=\frac{1}{r} \sum_{i=1}^{r} \delta_{\lambda\left(e_{i}\right)} .
$$

For any bounded increasing function f on \mathbb{R}, we have always

$$
\int_{\mathbb{R}} f \mathrm{~d} \nu_{\mathcal{F}, \mathbf{e}} \leq \int_{\mathbb{R}} f \mathrm{~d} \nu_{\mathcal{F}}
$$

Moreover, $\nu_{\mathcal{F}, \mathbf{e}}=\nu_{\mathcal{F}}$ if and only if for any $\lambda \in \mathbb{R}, \mathbf{e} \cap \mathcal{F}_{\lambda} V$ generates $\mathcal{F}_{\lambda} V$. In this case, we say that the base \mathbf{e} is compatible with the filtration \mathcal{F}. We denote by $\mathbf{F i l}_{\mathbf{e}}$ the set of all filtrations of V with which \mathbf{e} is compatible. Clearly there exists a one-to-one correspondence $\Phi_{\mathbf{e}}$ from $\mathbf{F i l}_{\mathbf{e}}$ to \mathbb{R}^{r}, which sends \mathcal{F} to $\left(\lambda_{\mathcal{F}}\left(e_{1}\right), \cdots, \lambda_{\mathcal{F}}\left(e_{r}\right)\right)$. If in addition Z is a subset of \mathbb{R}, we denote by $\mathbf{F i l}_{\mathrm{e}}^{Z}$ the subset of $\mathbf{F i l} \mathbf{e}_{\mathrm{e}}$ consisting of the filtrations supported by Z. The restriction of $\Phi_{\mathbf{e}}$ on $\mathbf{F i l} \mathbf{e}^{Z}$ gives a one-to-one correspondence from $\mathbf{F i l}_{\mathbf{e}}^{Z}$ to Z^{r}.

Let F be a subfield of \mathbb{R}. If we fix a non-zero vector l in V, then the function $\mathcal{F} \mapsto \lambda_{\mathcal{F}}(l)$ from $\mathbf{F i l}_{\mathbf{e}}^{F}$ to \mathbb{R} can be written as the minimal value of a finite number of F-linear forms. In fact, let $l=\sum_{i=1}^{r} a_{i} e_{i}$ be the decomposition of l in the base \mathbf{e}, then for any filtration \mathcal{F} with which \mathbf{e} is compatible, we have

$$
\lambda_{\mathcal{F}}(l)=\min _{\substack{1 \leq i \leq n \\ a_{i} \neq 0}} \lambda_{\mathcal{F}}\left(e_{i}\right)
$$

If $\varepsilon>0$ is a real number and if \mathcal{F} is a filtration of V, then $\psi_{\varepsilon} \mathcal{F}:=\left(\mathcal{F}_{\varepsilon \lambda} V\right)_{\lambda \in \mathbb{R}}$ is also a filtration of V, called the dilation of \mathcal{F} by ε. Clearly we have

$$
\begin{equation*}
\mathbb{E}\left[\psi_{\varepsilon} \mathcal{F}\right]=\varepsilon \mathbb{E}[\mathcal{F}] \quad \text { and } \quad \lambda_{\psi_{\varepsilon} \mathcal{F}}=\varepsilon \lambda_{\mathcal{F}} \tag{4}
\end{equation*}
$$

Let $\left(V^{(i)}\right)_{1 \leq i \leq n}$ be a family of non-zero vector spaces of finite rank and let $V=\bigoplus_{i=1}^{n} V^{(i)}$ be their direct sum. If for each integer $1 \leq i \leq n$, we choose a filtration $\mathcal{F}^{(i)}$ of $V^{(i)}$, then we can construct a filtration \mathcal{F} of V such that

$$
\mathcal{F}_{\lambda} V=\bigoplus_{i=1}^{n} \mathcal{F}_{\lambda}^{(i)} V^{(i)}
$$

Clearly we have the relation

$$
\nu_{\mathcal{F}}=\sum_{i=1}^{n} \frac{\mathrm{rk}_{K} V^{(i)}}{\mathrm{rk}_{K} V} \nu_{\mathcal{F}^{(i)}}
$$

The filtration \mathcal{F} is called the direct sum of $\mathcal{F}^{(i)}$ and will be denoted by $\mathcal{F}^{(1)} \oplus \cdots \oplus \mathcal{F}^{(n)}$. If for each $1 \leq i \leq n, \mathbf{e}^{(i)}$ is a base of $V^{(i)}$ which is compatible with $\mathcal{F}^{(i)}$, then the disjoint union $\mathbf{e}^{(1)} \amalg \cdots \amalg \mathbf{e}^{(n)}$, which is a base of $V^{(1)} \oplus \cdots \oplus V^{(n)}$, is compatible to $\mathcal{F}^{(1)} \oplus \cdots \oplus \mathcal{F}^{(n)}$. Similarly, if $W=\bigotimes_{i=1}^{n} V^{(i)}$ is the tensor product of $V^{(i)}$, we can also construct a filtration \mathcal{G} of W such that

$$
\mathcal{G}_{\lambda} W=\sum_{\lambda_{1}+\cdots+\lambda_{n} \geq \lambda} \bigotimes_{i=1}^{n} \mathcal{F}_{\lambda_{i}}^{(i)} V^{(i)}
$$

The probability $\nu_{\mathcal{G}}$ associated to the filtration \mathcal{G} is equal to the convolution

$$
\nu_{\mathcal{F}^{(1)}} * \cdots * \nu_{\mathcal{F}^{(n)}} .
$$

The filtration \mathcal{G} is called the tensor product of $\mathcal{F}^{(i)}$ and will be denoted by $\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$. Furthermore, if $\mathbf{e}^{(i)}$ is a base of $V^{(i)}$ which is compatible with the filtration $\mathcal{F}^{(i)}$, then the base

$$
\mathbf{e}^{(1)} \otimes \cdots \otimes \mathbf{e}^{(n)}:=\left\{e_{1} \otimes \cdots \otimes e_{n} \mid \forall 1 \leq i \leq n, e_{i} \in \mathbf{e}^{(i)}\right\}
$$

of $V^{(1)} \otimes \cdots \otimes V^{(n)}$ is compatible to $\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$. Finally, if $\varepsilon>0$ is a positive number, then

$$
\begin{equation*}
\psi_{\varepsilon}\left(\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}\right)=\psi_{\varepsilon} \mathcal{F}^{(1)} \otimes \cdots \otimes \psi_{\varepsilon} \mathcal{F}^{(n)} \tag{5}
\end{equation*}
$$

Let V be a non-zero vector space of finite rank over K. If \mathcal{F} and \mathcal{G} are two filtrations of V, we define the scalar product of \mathcal{F} and \mathcal{G} to be the number

$$
\begin{equation*}
\langle\mathcal{F}, \mathcal{G}\rangle:=\int_{\mathbb{R}^{2}} x y \mathrm{~d} \nu_{\mathcal{F}, \mathcal{G}}, \tag{6}
\end{equation*}
$$

where $\nu_{\mathcal{F}, \mathcal{G}}$ is the unique Borel measure on \mathbb{R}^{2} such that the measure of the square $\left[x_{1}, x_{2}\left[\times\left[y_{1}, y_{2}[\right.\right.\right.$ is

$$
\operatorname{rk}_{K}\left(\mathcal{F}_{x_{1}} V \cap \mathcal{G}_{y_{1}} V\right)-\operatorname{rk}_{K}\left(\mathcal{F}_{x_{1}} V \cap \mathcal{G}_{y_{2}} V\right)-\operatorname{rk}_{K}\left(\mathcal{F}_{x_{1}} V \cap \mathcal{G}_{y_{2}} V\right)+\operatorname{rk}_{K}\left(\mathcal{F}_{x_{2}} V \cap \mathcal{G}_{y_{2}} V\right)
$$

The number $\|\mathcal{F}\|:=\langle\mathcal{F}, \mathcal{F}\rangle^{\frac{1}{2}}$ is called the norm of the filtration \mathcal{F}. Notice that $\|\mathcal{F}\|=0$ if and only if $\nu_{\mathcal{F}}=\delta_{0}$. In this case, we say that the filtration \mathcal{F} is trivial. If $\mathbf{e}=\left(e_{1}, \cdots, e_{r}\right)^{T}$ is a base in V which is compatible simultaneously with \mathcal{F} and with \mathcal{G}, we have

$$
\nu_{\mathcal{F}, \mathcal{G}}=\sum_{i=1}^{r} \frac{1}{r} \delta_{\left(\lambda_{\mathcal{F}}\left(e_{i}\right), \lambda_{\mathcal{G}}\left(e_{i}\right)\right)}
$$

Hence

$$
\langle\mathcal{F}, \mathcal{G}\rangle=\frac{1}{r} \sum_{i=1}^{r} \lambda_{\mathcal{F}}\left(e_{i}\right) \lambda_{\mathcal{G}}\left(e_{i}\right),
$$

which means that, by identifying Fil $_{\mathbf{e}}$ through $\Phi_{\mathbf{e}}$ with a vector space of dimension r over \mathbb{R}, $\langle\cdot, \cdot\rangle$ define a scalar product on the corresponding vector space.

Let V be a non-zero vector space of finite rank over K and \mathcal{F} be a filtration of V corresponding to the flag

$$
V=V_{0} \supsetneq V_{1} \supsetneq V_{2} \supsetneq \cdots \supsetneq V_{d}=0
$$

together with the sequence $\left(\lambda_{j}\right)_{0 \leq j<d}$. For any integer $0 \leq j<d$, we pick a base \mathbf{e}^{j} of the subquotient V_{j} / V_{j+1}. After choosing a preimage of \mathbf{e}^{j} in V_{j} and taking the disjoint union of the preimages, we get a base $\mathbf{e}=\left(e_{1}, \cdots, e_{r}\right)$ of V which is clearly compatible with the filtration \mathcal{F}. The base e defines a natural isomorphism Ψ form V to $\bigoplus_{j=0}^{d-1}\left(V_{j} / V_{j+1}\right)$ which sends e_{i} to its class in $V_{\tau(i)} / V_{\tau(i)+1}$, where $\tau(i)=\max \left\{j \mid e_{i} \in V_{j}\right\}$. If for any integer $0 \leq j \leq d-1$, we choose a filtration \mathcal{G}^{j} of V_{j} / V_{j+1} which is compatible with the base \mathbf{e}^{j}, we can then construct a filtration \mathcal{G} on V which is just the direct sum via Ψ of $\mathcal{G}^{j}(1 \leq j \leq d)$. Notice that the base \mathbf{e} is compatible with the new filtration \mathcal{G}. If e_{i} is an element in \mathbf{e}, then we have $\lambda_{\mathcal{G}}\left(e_{i}\right)=\lambda_{\mathcal{G}^{\tau(i)}}\left(\Psi\left(e_{i}\right)\right)$. Therefore we have

$$
\begin{equation*}
\mathbb{E}[\mathcal{G}]=\frac{1}{r} \sum_{j=0}^{d-1} \mathbb{E}\left[\mathcal{G}^{j}\right] \mathrm{rk}_{K}\left(V_{j} / V_{j+1}\right), \quad\langle\mathcal{F}, \mathcal{G}\rangle=\frac{1}{r} \sum_{j=0}^{d-1} \lambda_{j} \mathbb{E}\left[\mathcal{G}^{j}\right] \mathrm{rk}_{K}\left(V_{j} / V_{j+1}\right) \tag{7}
\end{equation*}
$$

6 More facts in geometric invariant theory

We shall establish in this section the explicit version of a result of Ramanan and Ramanathan RR84 (Proposition 1.12) for our particular purpose, along the path indicated by Totaro Tot96 in his proof of Fontaine's conjecture.

Let \bar{K} be a perfect field. If G is a reductive group over Spec K, we call one parameter subgroup of G any morphism of K-group schemes from $\mathbb{G}_{\mathrm{m}, K}$ to G. Let X be a K-scheme on which G acts. If x is a rational point of X and if h is a one parameter subgroup of G, then we get a K-morphism from $\mathbb{G}_{\mathrm{m}, K}$ to X given by the composition

$$
\mathbb{G}_{\mathrm{m}, K} \xrightarrow{h} G \xrightarrow{\sim} G \times_{K} \operatorname{Spec} K \xrightarrow{\operatorname{Id} \times x} G \times_{K} X \xrightarrow{\sigma} X,
$$

where σ is the action of the group. If in addition X is proper over Spec K, this morphism extends in the unique way to a K-morphism $f_{h, x}$ from \mathbb{A}_{K}^{1} to X. We denote by 0 the unique element in $\mathbb{A}^{1}(K) \backslash \mathbb{G}_{\mathrm{m}}(K)$. The morphism $f_{h, x}$ sends the point 0 to a rational point of X which is invariant under the action of $\mathbb{G}_{\mathrm{m}, K}$. If L is a G-linear line bundle on X, then the action of $\mathbb{G}_{\mathrm{m}, K}$ on $\left.L\right|_{f_{h, x}(0)}$ defines a character of $\mathbb{G}_{\mathrm{m}, K}$ of the form $t \mapsto t^{\mu(x, h, L)}$ where $\mu(x, h, L) \in \mathbb{Z}$. Furthermore, if we denote by $\operatorname{Pic}^{G}(X)$ the group of isomorphism classes of all G-linear line bundles, then $\mu(x, h, \cdot)$ is a homomorphism of groups from $\operatorname{Pic}^{G}(X)$ to \mathbb{Z}.

Recall a well known result which gives a semistability criterion for rational points in a projective variety equipped with an action of a reductive group.

Theorem 6.1 (Hilbert-Mumford-Kempf-Rousseau) Let G be a reductive group which acts on a projective variety X over Spec K, L be a G-linear bundle on X and $x \in X(K)$ be a rational point. The point x is semistable for the action of G relatively to L if and only if $\mu(x, h, L) \geq 0$ for any one parameter subgroup h of G.

This theorem has been originally proved by Mumford (see MFK94]) for the case where K is algebraically closed. Then it has been independently proved in all generality by Kempf [Kem78] and Rousseau Rou78], where Kempf's approach has been revisited by Ramanan and Ramanathan [RR84] to prove that the tensor product of two semistable vector bundle on a smooth curve (over a perfect field) is also semistable. The idea of Kempf is to choose a special one parameter subgroup h_{0} of G destabilizing x, which minimizes a certain function. The uniqueness of his construction enabled us to descend to a smaller field. Later Totaro Tot96 introduced a new approach of Kempf's construction and thus found an elegant proof of Fontaine's conjecture.

In the following of this section, we recall Totaro's approach of Hilbert-Mumford criterion in our setting. We begin with calculating explicitly the number $\mu(x, h, L)$ by using filtrations introduced in the previous section.

Let V be a vector space of finite rank over K and $\rho: G \rightarrow \mathbb{G} \mathbb{L}(V)$ be a representation of G on V. If $h: \mathbb{G}_{\mathrm{m}, K} \rightarrow G$ is a one parameter subgroup, then the multiplicative group $\mathbb{G}_{\mathrm{m}, K}$ acts on V via h and ρ. Hence we can decompose V into direct sum of eigenspaces. More precisely, we have the decomposition $V=\bigoplus_{i \in \mathbb{Z}} V(i)$, where the action of $\mathbb{G}_{\mathrm{m}, K}$ on $V(i)$ is given by the composition

$$
\mathbb{G}_{\mathrm{m}, K} \times_{K} V(i) \xrightarrow{\left(t \mapsto t^{i}\right) \times \mathrm{Id}} \mathbb{G}_{\mathrm{m}, K} \times_{K} V(i) \longrightarrow V(i),
$$

the second arrow being the scalar multiplication structure on $V(i)$. The existence of such decomposition is easy when K is algebraically closed. The case where K is merely perfect follows by using Galois descent. We then define a filtration $\mathcal{F}^{\rho, h}$ (supported by \mathbb{Z}) of V such that

$$
\mathcal{F}_{\lambda}^{\rho, h} V=\sum_{i \geq \lambda} V(i) \quad(\lambda \in \mathbb{R})
$$

called the filtration associated to h relatively to the representation ρ. If there is no ambiguity on the representation, we also write \mathcal{F}^{h} instead of $\mathcal{F}^{\rho, h}$ to simplify the notations. We emphasize that if $G=\mathbb{G} \mathbb{L}(V)$ and if ρ is the canonical representation, then for any filtration \mathcal{F} of V supported by \mathbb{Z}, there exists a one-parameter subgroup h of G such that the filtration associated to h equals to \mathcal{F}.

From the scheme-theoretical point of view, the algebraic group G acts via the representation ρ on the projective space $\mathbb{P}\left(V^{\vee}\right)$ (with Grothendieck's convention). Any rational point x of $\mathbb{P}\left(V^{\vee}\right)$ corresponds to a 1-dimensional subspace of V in which we pick a non-zero element l_{x}.

Proposition 6.2 One has

$$
\mu\left(x, h, \mathcal{O}_{V^{\vee}}(1)\right)=-\lambda_{\mathcal{F}^{\rho, h}}\left(l_{x}\right)
$$

Proof. Let $l_{x}=\sum_{i \in \mathbb{Z}} l_{x}(i)$ be the canonical decomposition of l_{x}. Let $i_{0}=\lambda_{\mathcal{F}^{\rho}, h}\left(l_{x}\right)$. It is the maximal index i such that $l_{x}(i)$ is non-zero. Furthermore, $f_{h, x}(0)$ is just the rational point corresponding to the subspace of V generated by $l_{x}\left(i_{0}\right)$. By definition, the restriction of $\mathcal{O}_{V^{\vee}}(1)$ on x identifies with the quotient $\left(K l_{x}\right)^{\vee}$ of V^{\vee}. So $\mu\left(x, h, \mathcal{O}_{V^{\vee}}(1)\right)=-i_{0}=-\lambda_{\mathcal{F} \rho, h}\left(l_{x}\right)$.

Let $\left(V_{i}\right)_{1 \leq i \leq n}$ be a finite family of non-zero vector spaces of finite rank over K. For each integer $1 \leq i \leq n$, let r_{i} be the rank of V_{i}. Let G be the algebraic group $\mathbb{G L}\left(V_{1}\right) \times \cdots \times \mathbb{G L}\left(V_{n}\right)$. We suppose that the algebraic group G acts on a vector space V. Let $\pi: \mathbb{P}\left(V^{\vee}\right) \rightarrow \operatorname{Spec} K$ be the canonical morphism. For each integer $1 \leq i \leq n$, we choose an integer m_{i} which is divisible by r_{i}. Let M be the G-linear line bundle on $\mathbb{P}\left(V^{\vee}\right)$ as follows

$$
M:=\bigotimes_{i=1}^{n} \pi^{*}\left(\Lambda^{r_{i}} V_{i}\right)^{\otimes m_{i} / r_{i}} .
$$

It is a trivial line bundle on $\mathbb{P}\left(V^{\vee}\right)$ with possibly non-trivial G-action. Notice that any one parameter subgroup of G is of the form $h=\left(h_{1}, \cdots, h_{n}\right)$, where h_{i} is a one parameter subgroup of $\mathbb{G L}\left(V_{i}\right)$. Let $\mathcal{F}^{h_{i}}$ be the filtration of V_{i} associated to h_{i} relatively to the canonical representation of $\mathbb{G L}\left(V_{i}\right)$ on V_{i}. The action of $\mathbb{G}_{\mathrm{m}, K}$ via h_{i} on $\Lambda^{r_{i}} V_{i}$ is nothing other than the multiplication by $t^{r_{i} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right]}$. Therefore, we get the following result:

Proposition 6.3 With the notations above, for any rational point x of $\mathbb{P}\left(V^{\vee}\right)$, we have

$$
\mu(x, h, M)=\sum_{i=1}^{n} m_{i} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right]
$$

We now introduce the Kempf's destabilizing flag for the action of a finite product of general linear groups. Consider a family $\left(V^{(i)}\right)_{1 \leq i \leq n}$ of finite dimensional non-zero vector space over K. Let W be the tensor product $V^{(1)} \otimes_{K} \cdots \otimes_{K} V^{(n)}$ and G be the algebraic group $\mathbb{G} \mathbb{L}\left(V^{(1)}\right) \times$ $\cdots \times \mathbb{G} \mathbb{L}\left(V^{(n)}\right)$. For any integer $1 \leq i \leq n$, let $r^{(i)}$ be the rank of $V^{(i)}$. The group G acts naturally on W and hence on $\mathbb{P}\left(W^{\vee}\right)$. We denote by $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K the canonical morphism. Let m be a strictly positive integer which is divisible by all $r^{(i)}$ and L be a G-linear line bundle on $\mathbb{P}\left(W^{\vee}\right)$ as follows:

$$
L:=\mathcal{O}_{W^{\vee}}(m) \otimes \bigotimes_{i=1}^{n} \pi^{*}\left(\operatorname{det} V^{(i)}\right)^{\otimes\left(m / r^{(i)}\right)}
$$

Suppose that $h=\left(h_{1}, \cdots, h_{n}\right)$ is a one-parameter subgroup of G. The filtration \mathcal{F}^{h} of W associated to h coincides with the tensor product filtration $\mathcal{F}^{h_{1}} \otimes \cdots \otimes \mathcal{F}^{h_{n}}$, where $\mathcal{F}^{h_{i}}$ is the filtration of $V^{(i)}$ associated to h_{i}. After Proposition 6.2 and 6.3, for any rational point x of $\mathbb{P}\left(W^{\vee}\right)$, one has

$$
\begin{equation*}
\mu(x, h, L)=m\left(\sum_{i=1}^{n} \mathbb{E}\left[\mathcal{F}^{h_{i}}\right]-\lambda_{\mathcal{F}^{h}}\left(l_{x}\right)\right) \tag{8}
\end{equation*}
$$

We define a function $\Lambda_{x}: \mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\Lambda_{x}\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)=\frac{\mathbb{E}\left[\mathcal{F}^{(1)}\right]+\cdots+\mathbb{E}\left[\mathcal{F}^{(n)}\right]-\lambda_{\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}}\left(l_{x}\right)}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}} \tag{9}
\end{equation*}
$$

if at least one filtration among the $\mathcal{F}^{(i)}$'s is non-trivial, and $\Lambda_{x}\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)=0$ otherwise. Notice that the function Λ_{x} is invariant under dilation. In other words, if $\varepsilon>0$ is a positive number, then

$$
\Lambda_{x}\left(\psi_{\varepsilon} \mathcal{F}^{(1)}, \cdots, \psi_{\varepsilon} \mathcal{F}^{(n)}\right)=\Lambda_{x}\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)
$$

The Hilbert-Mumford criterion, joint with the equalities (8), (5) and (4), implies the following assertion:

Proposition 6.4 The point x is not semistable for the action of G relatively to L if and only if the function Λ_{x} defined above takes at least one strictly negative value.

The following result generalizes Proposition 2 of Tot96, and the proof is the same.
Proposition 6.5 With the notations of Proposition 6.4, if x is not semistable for the action of G relatively to L, then the function Λ_{x} attains its minimal value. Furthermore, the element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ minimizing Λ_{x} is unique up to dilations. Finally, if $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$
is an element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$ minimizing Λ_{x} and if c is the minimal value of Λ_{x}, then for any element $\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(n)}\right)$ in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Q}}$, we have the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \mathbb{E}\left[\mathcal{G}^{(i)}\right]-\lambda_{\mathcal{G}^{(1)} \otimes \cdots \otimes \mathcal{G}^{(n)}}\left(l_{x}\right) \geq c \frac{\left(\left\langle\mathcal{F}^{(1)}, \mathcal{G}^{(1)}\right\rangle+\cdots+\left\langle\mathcal{F}^{(n)}, \mathcal{G}^{(n)}\right\rangle\right)}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}} \tag{10}
\end{equation*}
$$

Proof. For each integer $1 \leq i \leq n$, let $\mathbf{e}^{(i)}$ be a base of $V^{(i)}$. Consider the restriction of Λ_{x} on $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$. By embedding canonically $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$ in the Euclidean space $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbf{e}^{(1)}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbf{e}}$, we extend the restriction of $\Lambda_{x}^{\mathbf{e}^{(()}}$to a function on $\mathbf{F i l}_{\mathbf{e}^{(1)}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}$, whose numerator part is the maximal value of a finite number of linear forms with rational coefficients (as we have shown in Section 5) and whose denominator part is just the norm of vector in the Euclidean space. Then after Lemma 3 of Tot96, the restriction of Λ_{x} on on $\mathbf{F i l}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$ attains its minimal value, and its minimizing element $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}{ }^{(n)}\right)$ in $\mathbf{F i l} \mathbf{e}_{\mathbf{e}^{(1)}}^{\mathbb{Q}} \times \cdots \times \mathbf{F i l}_{\mathbf{e}^{(n)}}^{\mathbb{Q}}$ is unique up to dilations. As pointed out by Totaro, there are only a finite number of functions on Euclidean space of dimension $r^{(1)}+\cdots+r^{(n)}$ arising from the restrictions as above. Thus we deduce that the function Λ_{x} attains globally its minimal value. Finally the uniqueness of minimizing filtrations (up to dilations) comes form the fact that for any two filtrations of $V^{(i)}$ we can choose a base of $V^{(i)}$ which is simultaneously compatible to them. This is just a consequence of the Bruhart's decomposition for general linear group. The same fact combining with Lemma 3 of Tot96] deduces the inequality (10).

Although the minimizing filtrations $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ in Proposition 6.5 are a priori supported by \mathbb{Q}, it is always possible to choose them to be supported by \mathbb{Z} after a dilation. Now let $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ be an element in $\mathbf{F i l}_{V^{(1)}}^{\mathbb{Z}} \times \cdots \times \mathbf{F i l}_{V^{(n)}}^{\mathbb{Z}}$ minimizing Λ_{x}. We suppose that $\mathcal{F}^{(i)}$ corresponds to the flag

$$
\mathscr{D}^{(i)}: V^{(i)}=V_{0}^{(i)} \supsetneq V_{1}^{(i)} \supsetneq \cdots \supsetneq V_{d^{(i)}}^{(i)}=0
$$

and the strictly increasing sequence of integers $\lambda^{(i)}=\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$. Let \widetilde{G} be the algebraic group

$$
\widetilde{G}:=\prod_{i=1}^{n} \prod_{j=0}^{d^{(i)}-1} \mathbb{G} \mathbb{L}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)
$$

Let $\mathcal{F}=\mathcal{F}^{(1)} \otimes \cdots \otimes \mathcal{F}^{(n)}$ and $\beta=\lambda_{\mathcal{F}}\left(l_{x}\right)$, which is the largest integer i such that $l_{x} \in \mathcal{F}_{i} W$. Let $\widetilde{W}:=\mathcal{F}_{i} W / \mathcal{F}_{i+1} W$ and let \widetilde{l}_{x} be the canonical image of l_{x} in \widetilde{W}. Notice that

$$
\widetilde{W}=\sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)} \geq \beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} / \sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}>\beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} \cong \bigoplus_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}=\beta} \bigotimes_{i=1}^{n}\left(V_{j_{i}}^{(i)} / V_{j_{i}+1}^{(i)}\right)
$$

So the algebraic group \widetilde{G} acts naturally on \widetilde{W}. Let \widetilde{x} be the rational point of $\mathbb{P}(\widetilde{W})$ corresponding to the subspace generated by \widetilde{l}_{x}. We shall discuss the semistability of \widetilde{x} for the action of \widetilde{G}.

Suppose that for any integers $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, we choose an arbitrary filtration $\mathcal{G}^{(i), j}$ of $V_{j}^{(i)} / V_{j+1}^{(i)}$ supported by \mathbb{Z}. We have explained in Section ${ }^{5}$ how to construct a new filtration $\mathcal{G}^{(i)}$ of $V^{(i)}$ from $\mathcal{G}^{(i), j}\left(0 \leq j<d^{(i)}\right)$. Let

$$
\mathcal{G}=\bigotimes_{i=1}^{n} \mathcal{G}^{(i)}, \quad \widetilde{\mathcal{G}}=\bigoplus_{\substack{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}=\beta}} \bigotimes_{i=1}^{n} \mathcal{G}^{(i), j_{i}}
$$

From the construction we know that $\lambda_{\mathcal{G}}\left(l_{x}\right)=\lambda_{\widetilde{\mathcal{G}}}\left(\widetilde{l}_{x}\right)$. For all integers $1 \leq i \leq n$ and $0 \leq j<$ $d^{(i)}$, let $r_{j}^{(i)}$ be the rank of $V_{j}^{(i)} / V_{j+1}^{(i)}$ over K. Using (7), the inequality (10) implies:

$$
\begin{align*}
& \sum_{i=1}^{n} \sum_{j=0}^{d^{(i)-1}} \frac{r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-\lambda_{\tilde{\mathcal{G}}}\left(\widetilde{l}_{x}\right) \geq \widetilde{c} \sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{\lambda_{j}^{(i)} r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right], \\
& \sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{\widetilde{c} \lambda_{j}^{(i)} r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-\lambda_{\tilde{\mathcal{G}}}\left(\widetilde{l}_{x}\right) \geq 0, \tag{11}
\end{align*}
$$

where $\widetilde{c}:=\frac{c}{\left(\left\|\mathcal{F}^{(1)}\right\|^{2}+\cdots+\left\|\mathcal{F}^{(n)}\right\|^{2}\right)^{\frac{1}{2}}}$ is a strictly negative rational number. Choose a strictly positive integer N divisible by all $r^{(i)}$ such that for any integers $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, $a_{j}^{(i)}:=-\frac{N \widetilde{c} \lambda_{j}^{(i)}}{r^{(i)}}$ is an integer. As the sequence $\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ is strictly increasing, also is $\mathbf{a}^{(i)}:=\left(a_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$. With this notation the inequality (11) becomes

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{j}^{(i)}}{r^{(i)}} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)} \mathbb{E}\left[\mathcal{G}^{(i), j}\right]-N \lambda_{\tilde{\mathcal{G}}}\left(\widetilde{l}_{x}\right) \geq 0 \tag{12}
\end{equation*}
$$

We are now able to establish an explicit version of Proposition 1.12 in RR84 for product of general linear groups. We will see that the explicite form of \bar{L} is crucial in Section 7 .

Proposition 6.6 Let $\widetilde{\pi}: \mathbb{P}\left(\widetilde{W}^{\vee}\right) \rightarrow$ Spec K be the canonical morphism and let
$\widetilde{L}:=\mathcal{O}_{\widetilde{W}^{\vee}}(N) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes N / r^{(i)}}\right) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes a_{j}^{(i)}}\right)$.
The rational point \widetilde{x} of $\mathbb{P}(\widetilde{W} \vee)$ is semistable for the action of \widetilde{G} relatively to the G-linear line bundle \widetilde{L}.

Proof. Let h be an arbitrary one parameter subgroup of \widetilde{G} corresponding to filtrations $\mathcal{G}^{(i), j}$. By Proposition 6.2, Proposition 6.3, and the fact that $\mu(\widetilde{x}, h, \cdot)$ is a homomorphism of groups, we obtain

$$
\begin{aligned}
\mu(\widetilde{x}, h, \widetilde{L}) & =\mu\left(\widetilde{x}, h, \mathcal{O}_{\widetilde{W}^{\vee}}(N)\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1}\left(\frac{N r_{j}^{(i)}}{r^{(i)}}+a_{j}^{(i)} r_{j}^{(i)}\right) \mathbb{E}\left[\mathcal{G}^{(i), j}\right] \\
& =-N \lambda_{\widetilde{\mathcal{G}}}\left(\widetilde{l}_{x}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1}\left(\frac{N r_{j}^{(i)}}{r^{(i)}}+a_{j}^{(i)} r_{j}^{(i)}\right) \mathbb{E}\left[\mathcal{G}^{(i), j}\right] \geq 0 .
\end{aligned}
$$

By Hilbert-Mumford's criterion, the point \widetilde{x} is semistable by the action of \widetilde{G} relatively to \widetilde{L}.

Finally we point out the following consequence of the inequality (11), which shall be useful.

Proposition 6.7 The minimizing filtrations $\left(\mathcal{F}^{(1)}, \cdots, \mathcal{F}^{(n)}\right)$ satisfy

$$
\mathbb{E}\left[\mathcal{F}^{(1)}\right]=\cdots=\mathbb{E}\left[\mathcal{F}^{(n)}\right]=0 .
$$

In other words, the equality $\sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$ holds, or equivalently, the equality $\sum_{j=0}^{d^{(i)}-1} \lambda_{j}^{(i)} r_{j}^{(i)}=$ 0 holds for any integer $1 \leq i \leq n$.

Proof. Let $\left(u_{i}\right)_{1 \leq i \leq n}$ be an arbitrary sequence of integers. For all integers $1 \leq i \leq n$ and $0 \leq j<d^{(i)}$, let $\mathcal{G}^{(i), j}$ be the filtration of $V_{j}^{(i)} / V_{j}^{(i+1)}$ the measure associated to which is $\delta_{u_{i}}$. Notice that in this case $\nu_{\widetilde{\mathcal{G}}}=\delta_{u_{1}+\cdots+u_{n}}$. The inequality (12) gives

$$
\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{i}^{(j)} u_{i}}{r^{(i)}}+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)} u_{i}-N \sum_{i=1}^{n} u_{i}=\sum_{i=1}^{n} u_{i} \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)} \geq 0
$$

Since $\left(u_{i}\right)_{1 \leq i \leq n}$ is arbitrary, we know that $\sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$, and therefore $\sum_{j=0}^{d^{(i)}-1} \lambda_{j}^{(i)} r_{j}^{(i)}=$ 0 .

7 Upper bound for the degree of a Hermitian line subbundle

In this section, we shall give an upper bound for the Arakelov degree of a Hermitian line subbundle of a finite tensor product of Hermitian vector bundles. As explained in the introduction, we shall use the results established in the previous section to reduce our problem to the case with semistability condition (in geometric invariant theory sense), which has already been discussed in Section 3. We point out that, in order to obtain the same estimation as (3) in full generality, we should assume that all Hermitian vector bundles \bar{E}_{i} are semistable, as a price paid for removing the semistability condition (in geometric invariant theory sense) for M_{K}.

We denote by K a number field and by \mathcal{O}_{K} its integer ring. Let $\left(\bar{E}^{(i)}\right)_{1 \leq i \leq n}$ be a family of semistable Hermitian vector bundles on $\operatorname{Spec} \mathcal{O}_{K}$. For each integer $1 \leq i \leq n$, let $r^{(i)}$ be the rank of $E^{(i)}$ and $V^{(i)}=E_{K}^{(i)}$. Let $\bar{E}=\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}$ and $W=E_{K}$. We denote by $\pi: \mathbb{P}\left(W^{\vee}\right) \rightarrow$ Spec K the natural morphism. The algebraic group $G:=\mathbb{G L}_{K}\left(V^{(1)}\right) \times_{K} \cdots \times_{K}$ $\mathbb{G}_{K}\left(V^{(n)}\right)$ acts naturally on $\mathbb{P}\left(W^{\vee}\right)$. Let \bar{M} be a Hermitian line subbundle of \bar{E} and m be a strictly positive integer which is divisible by all $r^{(i)}$'s.

Proposition 7.1 For any Hermitian line subbundle \bar{M} of $\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}$, one has

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}^{(i)}\right)+\frac{1}{2} \log \left(\operatorname{rk} E^{(i)}\right)\right)
$$

Proof. We have proved that if M_{K} is semistable for the action of G relatively to $\mathcal{O}_{W^{\vee}}(m) \otimes$ $\pi^{*}\left(\bigotimes_{i=1}^{n}\left(\Lambda^{r^{(i)}} V^{(i)}\right)^{\otimes m / r^{(i)}}\right)$, where m is a strictly positive integer which is divisible by all $r^{(i)}$, then the following inequality holds:

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}_{i}\right)+\frac{1}{2} \log r^{(i)}\right)
$$

If this hypothesis of semistability is not fulfilled, after Proposition 6.6, there exists two strictly positive integers N and β, and for each integer $1 \leq i \leq n$,

1) a flag

$$
\mathscr{D}^{(i)}: V^{(i)}=V_{0}^{(i)} \supsetneq V_{1}^{(i)} \supsetneq \cdots \supsetneq V_{d^{(i)}}^{(i)}=0
$$

of $V^{(i)}$ corresponding to the sequence

$$
E^{(i)}=E_{0}^{(i)} \supsetneq E_{1}^{(i)} \supsetneq \cdots \supsetneq E_{d^{(i)}}^{(i)}=0
$$

of saturated sub- \mathcal{O}_{K}-modules of E,
2) two strictly increasing sequence $\lambda^{(i)}=\left(\lambda_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ and $\mathbf{a}^{(i)}=\left(a_{j}^{(i)}\right)_{0 \leq j<d^{(i)}}$ of integers, such that
i) N is divisible by all $r^{(i)}$'s,
ii) for any integer $1 \leq i \leq n, \sum_{j=0}^{d^{(i)}-1} a_{j}^{(i)} r_{j}^{(i)}=0$, where $r_{j}^{(i)}=\operatorname{rk}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)$,
iii) the inclusion of M in E factorizes through $\sum_{\lambda_{i_{1}}^{(1)}+\cdots \lambda_{i_{n}}^{(n)} \geq \beta} E_{i_{1}}^{(1)} \otimes \cdots \otimes E_{i_{n}}^{(n)}$,
iv) the canonical image of M_{K} in

$$
\widetilde{W}:=\sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)} \geq \beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} / \sum_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}>\beta} \bigotimes_{i=1}^{n} V_{j_{i}}^{(i)} \cong \bigoplus_{\lambda_{j_{1}}^{(1)}+\cdots+\lambda_{j_{n}}^{(n)}=\beta} \bigotimes_{i=1}^{n}\left(V_{j_{i}}^{(i)} / V_{j_{i}+1}^{(i)}\right) .
$$

is non-zero, and is semistable for the action of the group

$$
\widetilde{G}:=\prod_{i=1}^{n} \prod_{j=0}^{d^{(i)}-1} \mathbb{G} \mathbb{L}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)
$$

relatively to

$$
\mathcal{O}_{\widetilde{W}^{\vee}}(N) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes N / r^{(i)}}\right) \otimes\left(\bigotimes_{i=1}^{n} \bigotimes_{j=0}^{d^{(i)}-1} \widetilde{\pi}^{*}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(V_{j}^{(i)} / V_{j+1}^{(i)}\right)\right)^{\otimes a_{j}^{(i)}}\right)
$$

where $\widetilde{\pi}: \mathbb{P}\left(\widetilde{W}^{\vee}\right) \rightarrow$ Spec K is the canonical morphism.
Notice that $\bigotimes_{j=0}^{d^{(i)}-1}\left(\Lambda_{j}^{r_{j}^{(i)}}\left(\bar{E}_{j}^{(i)} / \bar{E}_{j+1}^{(i)}\right)\right)^{\otimes a_{j}^{(i)}}$ is nothing other than $\overline{\mathscr{L}}_{\mathscr{D}^{(i)}}^{\mathbf{a}^{(i)}} \vee$ defined in Section 4 (see Remark 4.2 and Proposition 6.7 infra).

Applying Theorem 3.2, one gets

$$
\begin{aligned}
\widehat{\operatorname{deg}}(\bar{M}) & \leq \frac{1}{N} \sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N}{r^{(i)}}\left(\widehat{\operatorname{deg}}\left(\bar{E}_{j}^{(i)}\right)-\widehat{\operatorname{deg}}\left(\bar{E}_{j+1}^{(i)}\right)\right)-\frac{1}{N} \sum_{i=1}^{n} \widehat{\operatorname{deg} \overline{\mathscr{D}}_{\mathscr{D}}^{(i)}}+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{j}^{(i)} / r^{(i)}+r_{j}^{(i)} a_{j}^{(i)}}{2 N} \log r_{j}^{(i)} \\
& =\sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{n} \widehat{\operatorname{deg}} \overline{\mathscr{L}}_{\mathfrak{D}^{(i)}}^{{ }^{(i)}}+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{j}^{(i)} / r^{(i)}+r_{j}^{(i)} a_{j}^{(i)}}{2 N} \log r_{j}^{(i)} \\
& \leq \sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{j}^{(i)} / r^{(i)}+r_{j}^{(i)} a_{j}^{(i)}}{2 N} \log r_{j}^{(i)},
\end{aligned}
$$

the last inequality is because $\bar{E}^{(i)}$,s are semistable (see Proposition 4.1 infra). The semistability of the canonical image of M_{K} implies that $N r_{j}^{(i)} / r^{(i)}+r_{j}^{(i)} a_{j}^{(i)} \geq 0$ for any integer $1 \leq i \leq n$. Therefore

$$
\widehat{\operatorname{deg}}(\bar{M}) \leq \sum_{i=1}^{n} \widehat{\mu}\left(\bar{E}^{(i)}\right)+\sum_{i=1}^{n} \sum_{j=0}^{d^{(i)}-1} \frac{N r_{j}^{(i)} / r^{(i)}+r_{j}^{(i)} a_{j}^{(i)}}{2 N} \log r^{(i)}
$$

As for any integer $1 \leq i \leq n, \sum_{j=0}^{d^{(i)}-1} r_{j}^{(i)} a_{j}^{(i)}=0$, we have proved the Proposition.
For any non-zero Hermitian vector bundle \bar{F} on $\operatorname{Spec} \mathcal{O}_{K}$ we denote by udeg (\bar{F}) the maximal degree of line subbundles of \bar{F}. We recall a result of J.-B. Bost and K. Künnemann BK07 comparing the maximal degree and the maximal slope of \bar{F} which states as follows:

$$
\begin{equation*}
\widehat{\mathrm{udeg}}(\bar{F}) \leq \widehat{\mu}_{\max }(\bar{F}) \leq \widehat{\mathrm{udeg}}(\bar{F})+\frac{1}{2} \log (\operatorname{rk} F)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} \tag{13}
\end{equation*}
$$

This is actually a variant of the first theorem of Minkowski. Using this inequality, Proposition 7.1 implies:

Corollary 7.2 The following inequality is verified:

$$
\widehat{\mu}_{\max }\left(\bar{E}^{(1)} \otimes \cdots \otimes \bar{E}^{(n)}\right) \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{E}^{(i)}\right)+\log \left(\operatorname{rk} E^{(i)}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
$$

8 Proof of Theorem 1.1

We finally give the proof of Theorem 1.1.
Lemma 8.1 Let K be a number field and \mathcal{O}_{K} be its integer ring. Suppose given a finite family $\left(\bar{E}_{i}\right)_{1 \leq i \leq n}$ of non-zero Hermitian vector bundles (non-necessarily semistable). Let $\bar{E}=$ $\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{n}$. Then the following inequality holds:

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(E_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
$$

Proof. Let F be a sub- \mathcal{O}_{K}-module of E. By taking Harder-Narasimhan flags of E_{i} 's (cf. Bos96]) we obtain that there exists, for any $1 \leq i \leq n$, a semistable subquotient $\bar{F}_{i} / \bar{G}_{i}$ of E_{i} such that

1) $\widehat{\mu}\left(\bar{F}_{i} / \bar{G}_{i}\right) \leq \widehat{\mu}_{\max }\left(\bar{E}_{i}\right)$,
2) the homomorphism of inclusion from F to E factorise through $F_{1} \otimes \cdots \otimes F_{n}$,
3) the canonical image of F in $\left(F_{1} / G_{1}\right) \otimes \cdots \otimes\left(F_{n} / G_{n}\right)$ does not vanish.

Combining with the slope inequality, Corollary 7.2 implies

$$
\begin{aligned}
\widehat{\mu}_{\min }(\bar{F}) & \leq \sum_{i=1}^{n}\left(\widehat{\mu}\left(\bar{F}_{i} / \bar{G}_{i}\right)+\log \left(\operatorname{rk}\left(F_{i} / G_{i}\right)\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]} \\
& \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
\end{aligned}
$$

Since F is arbitrary, the proposition is proved.
Proof of Theorem 1.1 Let $N \geq 1$ be an arbitrary integer, after Lemma 8.1, one has, in considering $\bar{E}^{\otimes N}$ as $\underbrace{\bar{E}_{1} \otimes \cdots \otimes \bar{E}_{1}}_{N \text { copies }} \otimes \cdots \otimes \underbrace{\bar{E}_{n} \otimes \cdots \otimes \bar{E}_{n}}_{N \text { copies }}$

$$
\widehat{\mu}_{\max }\left(\bar{E}^{\otimes N}\right) \leq \sum_{i=1}^{n} N\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\operatorname{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2[K: \mathbb{Q}]}
$$

On the other hand, it is clear that $\widehat{\mu}_{\max }\left(\bar{E}^{\otimes N}\right) \geq N \widehat{\mu}_{\max }(\bar{E})$. Therefore, one has

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\mathrm{rk} E_{i}\right)\right)+\frac{\log \left|\Delta_{K}\right|}{2 N[K: \mathbb{Q}]}
$$

As N is arbitrary, we obtain by taking $N \rightarrow+\infty$,

$$
\widehat{\mu}_{\max }(\bar{E}) \leq \sum_{i=1}^{n}\left(\widehat{\mu}_{\max }\left(\bar{E}_{i}\right)+\log \left(\mathrm{rk} E_{i}\right)\right)
$$

the theorem is thus proved.

References

[ABP73] M. Atiyah, R. Bott, and V. K. Patodi. On the heat equation and the index theorem. Inventiones Mathematicae, 19:279-330, 1973.
[BK07] Jean-Benoît Bost and Klaus Künnemann. Hermitian vector bundles and extension groups on arithmetic schemes. I. geometry of numbers. prépublication, 2007.
[Bos94] Jean-Benoît Bost. Semi-stability and heights of cycles. Inventiones Mathematicae, 118(2):223-253, 1994.
[Bos96] Jean-Benoît Bost. Périodes et isogenies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz). Astérisque, (237):Exp. No. 795, 4, 115-161, 1996. Séminaire Bourbaki, Vol. 1994/1995.
[Bos97] Jean-Benoît Bost. Hermitian vector bundle and stability. Exposé à Oberwolfach, Conférence "Algebraische Zahlentheorie", le 24 juillet, 1997.
[Bos01] Jean-Benoît Bost. Algebraic leaves of algebraic foliations over number fields. Publications Mathématiques. Institut de Hautes Études Scientifiques, (93):161-221, 2001.
[Bos04] Jean-Benoît Bost. Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems. In Geometric aspects of Dwork theory. Vol. I, II, pages 371-418. Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[CH88] Maurizio Cornalba and Joe Harris. Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 21(3):455-475, 1988.
[Che06] Huayi Chen. Positivité en géométrie algébrique et en géométrie d'Arakelov : application à l'algébrisation et à l'étude asymptotique des polygones de Harder-Narasimhan. Thèse de l'Ecole Polytechnique, Décembre 2006.
[Che07] Huayi Chen. Harder-Narasimhan categories. preprint, 2007.
[CL02] Antoine Chambert-Loir. Théorèmes d'algébricité en géométrie diophantienne (d'après J.-B. Bost, Y. André, D. \& G. Chudnovsky). Astérisque, (282):Exp. No. 886, viii, 175-209, 2002. Séminaire Bourbaki, Vol. 2000/2001.
[dS] Ehud de Shalit. f-isocrystals. note de cours.
[dSP06] Ehud de Shalit and Ori Parzanchevski. On tensor products of semistable lattices. Prépublication, 2006.
[Fal89] Gerd Faltings. Crystalline cohomology and p-adic Galois-representations. In Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), pages 25-80. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
[Fon79] Jean-Marc Fontaine. Modules galoisiens, modules filtrés et anneaux de BarsottiTate. In Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, volume 65 of Astérisque, pages 3-80. Soc. Math. France, Paris, 1979.
[Gas00] Carlo Gasbarri. Heights and geometric invariant theory. Forum Mathematicum, 12:135-153, 2000.
[Gau07] Éric Gaudron. Pentes de fibrés vectoriels adéliques sur un corps globale. Rendiconti del Seminario Matematico della Università di Padova, 2007. à paraître.
[Gie73] David Gieseker. Stable vector bundles and the Frobenius morphism. Annales Scientifiques de l'École Normale Supérieure. Quatrième Série, 6:95-101, 1973.
[Gie77] David Gieseker. Global moduli for surfaces of general type. Inventiones Mathematicae, 43(3):233-282, 1977.
[Gra76] Daniel Grayson. Higher algebraic K-theory II (after Daniel Quillen). In Algebraic K-theory (Proceedings of the Conference held at Northwestern University, 1976), pages 217-240. Lecture Notes in Mathematics, Vol. 551. Springer, Berlin, 1976.
[Gra00] Philippe Graftieaux. Formal groups and the isogeny theorem. Duke Mathematical Journal, 106(1):81-121, 2000.
[Jac89] Nathan Jacobson. Basic algebra. II. W. H. Freeman and Company, New York, second edition, 1989.
[Kem78] George R. Kempf. Instability in invariant theory. Annals of Mathematics, (108):299316, 1978.
[Lan02] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.
[NS65] M. S. Narasimhan and C. S. Seshadri. Stable and unitary vector bundles on a compact Riemann surface. Annals of Mathematics. Second Series, 82:540-567, 1965.
[Pie82] Richard S. Pierce. Associative algebras, volume 88 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. Studies in the History of Modern Science, 9.
[Ray81] M. Raynaud. Fibrés vectoriels instables-applications aux surfaces (d'après Bogomolov). In Algebraic surfaces (Orsay, 1976-78), volume 868 of Lecture Notes in Math., pages 293-314. Springer, Berlin, 1981.
[Rou78] Guy Rousseau. Immeubles sphériques et théorie des invariants. Comptes Rendus Mathématique. Académie des Sciences. Paris, 286(5):A247-A250, 1978.
[RR84] S. Ramanan and A. Ramanathan. Some remarks on the instability flag. The Tohoku Mathematical Journal. Second Series, 36(2):269-291, 1984.
[Stu76] U. Stuhler. Eine bemerkung zur reduktionstheorie quadratischen formen. Archiv. der Math., 27:604-610, 1976.
[Tot96] Burt Totaro. Tensor products in p-adic Hodge theory. Duke Mathematical Journal, 83(1):79-104, 1996.
[Wey97] Hermann Weyl. The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Their invariants and representations, Fifteenth printing, Princeton Paperbacks.

[^0]: *CMLS, Ecole Polytechnique, Palaiseau 91120, France. (huayi.chen@polytechnique.org)

