A CLT for Information-theoretic statistics of Gram random matrices with a given variance profile - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

A CLT for Information-theoretic statistics of Gram random matrices with a given variance profile

Résumé

Consider a $N\times n$ random matrix $Y_n=(Y_{ij}^{n})$ where the entries are given by $$ Y_{ij}^{n}=\frac{\sigma_{ij}(n)}{\sqrt{n}} X_{ij}^{n}\ , $$ the $X_{ij}^{n}$ being centered, independent and identically distributed random variables with unit variance and $(\sigma_{ij}(n); 1\le i\le N, 1\le j\le n)$ being an array of numbers we shall refer to as a variance profile. We study in this article the fluctuations of the random variable $$ \log\det\left(Y_n Y_n^* + \rho I_N \right) $$ where $Y^*$ is the Hermitian adjoint of $Y$ and $\rho > 0$ is an additional parameter. We prove that when centered and properly rescaled, this random variable satisfies a Central Limit Theorem (CLT) and has a Gaussian limit whose parameters are identified. A complete description of the scaling parameter is given; in particular it is shown that an additional term appears in this parameter in the case where the 4$^\textrm{th}$ moment of the $X_{ij}$'s differs from the 4$^{\textrm{th}}$ moment of a Gaussian random variable. Such a CLT is of interest in the field of wireless communications.
Fichier principal
Vignette du fichier
tlc-log.pdf (554.83 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00151136 , version 1 (01-06-2007)

Identifiants

Citer

Walid Hachem, Philippe Loubaton, Jamal Najim. A CLT for Information-theoretic statistics of Gram random matrices with a given variance profile. 2007. ⟨hal-00151136⟩
394 Consultations
129 Téléchargements

Altmetric

Partager

More