On two combinatorial problems arising from automata theory - Archive ouverte HAL
Communication Dans Un Congrès Année : 1983

On two combinatorial problems arising from automata theory

Résumé

We present some partial results on the following conjectures arising from automata theory. The first conjecture is the triangle conjecture due to Perrin and Schützenberger. Let A = {a, b} be a two-letter alphabet, d a positive integer and let B_d = {a^iba^j | 0 <= i+j <= d}. If X \subset B_d is a code, then |X| <= d+1. The second conjecture is due to Cerný and the author. Let A be an automaton with n states. If there exists a word of rank <= k in A, there exists such a word with length <= (n-k)^2.
Fichier principal
Vignette du fichier
TwoCombinatorial.pdf (152.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00143937 , version 1 (28-04-2007)

Identifiants

  • HAL Id : hal-00143937 , version 1

Citer

Jean-Eric Pin. On two combinatorial problems arising from automata theory. Combinatorial mathematics (Marseille-Luminy, 1981), 1983, Marseille-Luminy, pp.535-548. ⟨hal-00143937⟩
120 Consultations
772 Téléchargements

Partager

More