On two combinatorial problems arising from automata theory
 Jean-Eric Pin

To cite this version:

Jean-Eric Pin. On two combinatorial problems arising from automata theory. Combinatorial mathematics (Marseille-Luminy, 1981), 1983, Marseille-Luminy, pp.535-548. hal-00143937

HAL Id: hal-00143937

https://hal.science/hal-00143937

Submitted on 28 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On two combinatorial problems arising from automata theory

Jean-Éric Pin
LITP, CNRS and Université Paris 6 (France)

Abstract

We present some partial results on the following conjectures arising from automata theory. The first conjecture is the triangle conjecture due to Perrin and Schützenberger. Let $A=\{a, b\}$ be a two-letter alphabet, d a positive integer and let $B_{d}=\left\{a^{i} b a^{j} \mid 0 \leqslant i+j \leqslant d\right\}$. If $X \subset B_{d}$ is a code, then $|X| \leqslant d+1$. The second conjecture is due to Černý and the author. Let \mathcal{A} be an automaton with n states. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant k^{2}$.

1 Introduction

The theory of automata and formal langauges provides many beautiful combinatorial results and problems which, I feel, ought to be known. The book recently published: Combinatorics on words, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some importance in automata theory. The first one, recently proposed by Perrin and Schützenberger [9], was originally stated in terms of coding theory. Let $A=\{a, b\}$ be a two-letter alphabet and let A^{*} be the free monoid generated by A. Recall that a subset C of A^{*} is a code whenever the submonoid of A^{*} generated by C is free with base C; i.e., if the relation $c_{1} \cdots c_{p}=c_{1}^{\prime} \cdots c^{\prime} q$, where $c_{1}, \ldots, c_{p}, c_{1}^{\prime}, \ldots, c_{q}^{\prime}$ are elements of C implies $p=q$ and $c_{i}=c_{i}^{\prime}$ for $1 \leqslant i \leqslant p$. Set, for any $d>0, B_{d}=\left\{a^{i} b a^{j} \mid 0 \leqslant i+j \leqslant d\right\}$. One can now state the following conjecture:

The triangle conjecture. Let $d>0$ and $X \subset B_{d}$. If X is a code, then $|X| \leqslant d+1$.
The term "The triangle conjecture" originates from the following construction: if one represents every word of the form $a^{i} b a^{j}$ by a point $(i, j) \in \mathbb{N}^{2}$, the set B_{d} is represented by the triangle $\left\{(i, j) \in \mathbb{N}^{2} \mid 0 \leqslant i+j \leqslant d\right\}$. The second conjecture was originally stated by Cerný (for $k=n-1$) [3] and extended by the author. Recall that a finite automaton \mathcal{A} is a triple (Q, A, δ), where Q is a finite set (called the set of states), A is a finite set (called the alphabet) and $\delta: Q \times A \rightarrow Q$ is a map. Thus δ defines an action of each letter of A on Q. For simplicity, the action of the letter a on the state q is usually denoted by $q a$. This action can be extended to A^{*} (the free monoid on A) by the associativity rule

$$
(q w) a=q(w a) \text { for all } q \in Q, w \in A^{*}, a \in A
$$

Thus each word $w \in A^{*}$ defines a map from Q to Q and the rank of w in \mathcal{A} is the integer $\operatorname{Card}\{q w \mid q \in Q\}$.

One can now state the following
Conjecture (C). Let \mathcal{A} be an automaton with n states and let $0 \leqslant k \leqslant n-1$. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant k^{2}$.

2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle $\left\{(i, j) \in \mathbb{N}^{2} \mid 0 \leqslant\right.$ $i+j \leqslant d\}$ to describe some properties of X. For example, " X has at most two columns occupied" means that there exist two integers $0 \leqslant i_{1}<i_{2}$ such that X is contained in $a^{i_{1}} b a^{*} \cup a^{i_{2}} b a^{*}$.

Only a few partial results are known on the triangle conjecture. First of all the conjecture is true for $d \leqslant 9$; this result has been obtained by a computer, somewhere in Italy.

In [5], Hansel computed the number t_{n} of words obtained by concatenation of n words of B_{d}. He deduced from this the following upper bound for $|X|$.

Theorem 2.1 Let $X \subset B_{d}$. If X is a code, then $|X| \leqslant(1+(1 / \sqrt{2}))(d+1)$.
Perrin and Schützenberger proved the following theorem in [9].
Theorem 2.2 Assume that the projections of X on the two components are both equal to the set $\{0,1, \ldots, r\}$ for some $r \leqslant d$. If X is a code, then $|X| \leqslant r+1$.

Two further results have been proved by Simon and the author [15].
Theorem 2.3 Let $X \subset B_{d}$ be a set having at most two rows occupied. If X is a code, then $|X| \leqslant d+1$.

Theorem 2.4 Assume there is exactly one column of $X \subset B_{d}$ with two points or more. If X is a code, then $|X| \leqslant d+1$.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then $|X| \leqslant d+1$.

Proof. Indeed assume that $|X|>d+1$. Then one of the columns of X has two points or more. Thus one can find a set $Y \subset X$ such that: (1) all columns but one of Y contain exactly one point; (2) the exceptional column contains two points. Since $|Y|>d+1, Y$ is a non-code by Theorem 2.4. Thus X is a non-code.

Of course statements 2.3, 2.4, 2.5 are also true if one switches "row" and "column".

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case $k=n-1$: "Let \mathcal{A} be an automaton with n states containing a word of rank 1. Then there exists such a word of length $\leqslant(n-1)^{2}$."

First of all the bound $(n-1)^{2}$ is sharp. In fact, let $\mathcal{A}_{n}=(Q,\{a, b\}, \delta)$, where $Q=\{0,1, \ldots, n-1\}, i a=i$ and $i b=i+1$ for $i \neq n-1$, and $(n-1) a=(n-1) b=0$.

Then the word $\left(a b^{n-1}\right)^{n-2} a$ has rank 1 and length $(n-1)^{2}$ and this is the shortest word of rank 1 (see [3] or [10] for a proof).

Moreover, the conjecture has been proved for $n=1,2,3,4$ and the following upper bounds have been obtained

$$
\begin{array}{ll}
2^{n}-n-1 & (\text { Černý }[2], 1964) \\
\frac{1}{2} n^{3}-\frac{3}{2} n^{2}+n+1 & (\text { Starke }[16,17], 1966) \\
\frac{1}{2} n^{3}-n^{2}+\frac{n}{2} & (\text { Kohavi }[6], 1970) \\
\frac{1}{3} n^{3}-\frac{3}{2} n^{2}+\frac{25}{6} n-4 & (\text { Černý, Pirická et Rosenauerová [4], 1971) } \\
\frac{7}{27} n^{3}-\frac{17}{18} n^{2}+\frac{17}{6} n-3 & (\text { Pin }[11], 1978)
\end{array}
$$

For the general case, the bound k^{2} is also the best possible (see [10]) and the conjecture has been proved for $k=0,1,2,3$ [10]. The best known upper bound was

$$
\frac{1}{3} k^{3}-\frac{1}{3} k^{2}+\frac{13}{6} k-1[11]
$$

We prove here some improvements of these results. We first sketch the idea of the proof. Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states. For $K \subset Q$ and $w \in A^{*}$, we shall denote by $K w$ the set $\{q w \mid q \in K\}$. Assume there exists a word of rank $\leqslant n-k$ in \mathcal{A}. Since the conjecture is true for $k \leqslant 3$, one can assume that $k \geqslant 4$. Certainly there exists a letter a of rank $\neq n$. (If not, all words define a permutation on Q and therefore have rank n). Set $K_{1}=Q a$. Next look for a word m_{1} (of minimal length) such that $K_{2}=K_{1} m_{1}$ satisfies $\left|K_{2}\right|<\left|K_{1}\right|$. Then apply the same procedure to K_{2}, etc. until one of the $\mid K_{i}$'s satisfies $\left|K_{i}\right| \leqslant n-k$:

$$
Q \xrightarrow{a} K_{1} \xrightarrow{m_{1}} K_{2} \xrightarrow{m_{2}} \cdots K_{r-1} \xrightarrow{m_{r-1}} K_{r} \quad\left|K_{r}\right| \leqslant n-k
$$

Then $a m_{1} \cdots m_{r-1}$ has rank $\leqslant n-k$.
The crucial step of the procedure consists in solving the following problem:
Problem P. Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $2 \leqslant m \leqslant n$ and let K be an m-subset of Q. Give an upper bound of the length of the shortest word w (if it exists) such that $|K w|<|K|$.

There exist some connections between Problem P and a purely combinatorial Problem P'.

Problem P'. Let Q be an n-set and let s and t be two integers such that $s+t \leqslant n$. Let $\left(S_{i}\right)_{1 \leqslant i \leqslant p}$ and $\left(T_{i}\right)_{1 \leqslant i \leqslant p}$ be subsets of Q such that
(1) For $1 \leqslant i \leqslant p,\left|S_{i}\right|=s$ and $\left|T_{i}\right|=t$.
(2) For $1 \leqslant i \leqslant p, S_{i} \cap T_{i}=\emptyset$.
(3) For $1 \leqslant j<i \leqslant p, S_{j} \cap T_{i}=\emptyset$.

Find the maximum value $p(s, t)$ of p.
We conjecture that $p(s, t)=\binom{s+t}{s}=\binom{s+t}{t}$. Note that if (3) is replaced by
(3') For $1 \leqslant i \neq j \leqslant p, S_{i} \cap T_{j}=\emptyset$.
then the conjecture is true (see Berge [1, p. 406]).
We now state the promised connection between Problems P and P'.
Proposition 3.1 Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $0 \leqslant s \leqslant n-2$ and let K be an $(n-s)$-subset of Q. If there exists a word w such that $|K w|<|K|$, one can choose w with length $\leqslant p(s, 2)$.

Proof. Let $w=a_{1} \cdots a_{p}$ be a shortest word such that $|K w|<|K|=n-s$ and define $K_{1}=K, K_{2}=K_{1} a_{1}, \ldots, K_{p}=K_{p-1} a_{p-1}$. Clearly, an equality of the form $\left|K_{i}\right|=\left|K a_{1} \cdots a_{i}\right|<|K|$ for some $i<p$ is inconsistent with the definition of w. Therefore $\left|K_{1}\right|=\left|K_{2}\right|=\cdots=\left|K_{p}\right|=(n-s)$. Moreover, since $\left|K_{p} a_{p}\right|<\left|K_{p}\right|, K_{p}$ contains two elements x_{p} and y_{p} such that $x_{p} a_{p}=y_{p} a_{p}$.

Define 2-sets $T_{i}=\left\{x_{i}, y_{i}\right\} \subset K_{i}$ such that $x_{i} a_{i}=x_{i+1}$ and $y_{i} a_{i}=y_{i+1}$ for $1 \leqslant i \leqslant$ $p-1$ (the T_{i} are defined from $T_{p}=\left\{x_{p}, y_{p}\right\}$). Finally, set $S_{i}=Q \backslash K_{i}$. Thus we have
(1) For $1 \leqslant i \leqslant p,\left|S_{i}\right|=s$ and $\left|T_{i}\right|=2$.
(2) For $1 \leqslant i \leqslant p, S_{i} \cap T_{i}=\emptyset$.

Finally assume that for some $1 \leqslant j<i \leqslant p, S_{i} \cap T_{i}=\emptyset$, i.e., $\left\{x_{i}, y_{i}\right\} \subset K_{i}$. Since

$$
x_{i} a_{i} \cdots a_{p}=y_{i} a_{i} \cdots a_{p}
$$

it follows that

$$
\left|K a_{1} \cdots a_{j-1} a_{i} \cdots a_{p}\right|=\left|K_{j} a_{i} \cdots a_{p}\right|<n-s
$$

But the word $a_{1} \cdots a_{j-1} a_{i} \cdots a_{p}$ is shorter that w, a contradiction.
Thus the condition (3), for $1 \leqslant j<i \leqslant p, S_{j} \cap T_{i} \neq \emptyset$, is satisfied, and this concludes the proof.

I shall give two different upper bounds for $p(s)=p(2, s)$.

Proposition 3.2

(1) $p(0)=1$,
(2) $p(1)=3$,
(3) $p(s) \leqslant s^{2}-s+4$ for $s \geqslant 2$.

Proof. First note that the S_{i} 's $\left(T_{i}\right.$'s) are all distinct, because if $S_{i}=S_{j}$ for some $j<i$, then $S_{i} \cap T_{i}=\emptyset$ and $S_{i} \cap T_{j} \neq \emptyset$, a contradiction.

Assertion (1) is clear.
To prove (2) assumet that $p(1)>3$. Then, since $T_{4} \cap S_{1} \neq \emptyset, T_{4} \cap S_{2} \neq \emptyset, T_{4} \cap S_{3} \neq \emptyset$, two of the three 1-sets S_{1}, S_{2}, S_{3} are equal, a contradiction.

On the other hand, the sequence $S_{1}=\left\{x_{1}\right\}, S_{2}=\left\{x_{2}\right\}, S_{3}=\left\{x_{3}\right\}, T_{1}=\left\{x_{2}, x_{3}\right\}$, $T_{2}=\left\{x_{1}, x_{3}\right\}, T_{3}=\left\{x_{1}, x_{2}\right\}$ satisfies the conditions of Problem P'. Thus $p(1)=3$.

To prove (3) assume at first that $S_{1} \cap S_{2}=\emptyset$ and consider a 2 -set T_{i} with $i \geqslant 4$. Such a set meets S_{1}, S_{2} and S_{3}. Since S_{1} and S_{2} are disjoint sets, T_{i} is composed as follows:

- either an element of $S_{1} \cap S_{3}$ with an element of $S_{2} \cap S_{3}$,
- or an element of $S_{1} \cap S_{3}$ with an element of $S_{2} \backslash S_{3}$,
- or an element of $S_{1} \backslash S_{3}$ with an element of $S_{2} \cap S_{3}$.

Therefore

$$
\begin{aligned}
p(s)-3 & \leqslant\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|+\left|S_{1} \cap S_{3}\right|\left|S_{2} \backslash S_{3}\right|+\left|S_{1} \backslash S_{3}\right|\left|S_{2} \cap S_{3}\right| \\
& =\left|S_{1} \cap S_{3}\right|\left|S_{2}\right|+\left|S_{1}\right|\left|S_{2} \cap S_{3}\right|-\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right| \\
& =s\left(\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right|\right)-\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|
\end{aligned}
$$

Since S_{1}, S_{2}, S_{3} are all distinct, $\left|S_{1} \cap S_{3}\right| \leqslant s-1$. Thus if $\left|S_{1} \cap S_{3}\right|=0$ or $\left|S_{2} \cap S_{3}\right|=0$ it follows that

$$
p(s) \leqslant s(s-1)+3=s^{2}-s+3
$$

If $\left|S_{1} \cap S_{3}\right| \neq 0$ and $S_{2} \cap S_{3} \mid \neq 0$, one has

$$
\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right| \geqslant\left|S_{1} \cap S_{3}\right|\left|S_{2} \cap S_{3}\right|-1
$$

and therefore:

$$
p(s) \leqslant 3+(s-1)\left(\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right|\right)+1 \leqslant s^{2}-s+4
$$

since $\left|S_{1} \cap S_{3}\right|+\left|S_{2} \cap S_{3}\right| \leqslant\left|S_{3}\right|=s$.
We now assume that $a=\left|S_{1} \cap S_{2}\right|>0$, and we need some lemmata.
Lemma 3.3 Let x be an element of Q. Then x is contained in at most $(s+1) T_{i}$'s.
Proof. If not there exist $(s+2)$ indices $i_{1}<\ldots<i_{s+2}$ such that $T_{i_{j}}=\left\{x, x_{i_{j}}\right\}$ for $1 \leqslant j \leqslant s+2$. Since $S_{i_{1}} \cap T_{i_{1}} \neq \emptyset, x \notin S_{i_{1}}$. On the other hand, $S_{i_{1}}$ meets all $T_{i_{j}}$ for $2 \leqslant j \leqslant s+2$ and thus the s-set $S_{i_{1}}$ has to contain the $s+1$ elements $x_{i_{2}}, \ldots, x_{i_{s+2}}$, a contradiction.

Lemma 3.4 Let R be an r-subset of Q. Then R meets at most $(r s+1) T_{i}$'s.
Proof. The case $r=1$ follows from Lemma 3.3. Assume $r \geqslant 2$ and let x be an element of R contained in a maximal number N_{x} of T_{i} 's. Note that $N_{x} \leqslant s+1$ by Lemma 3.3. If $N_{x} \leqslant s$ for all $x \in R$, then R meets at most rs T_{i} 's. Assume there exists an $x \in R$ such that $N_{x}=s+1$. Then x meets $(s+1) T_{i}$'s, say $T_{i_{1}}=\left\{x, x_{i_{1}}\right\}, \ldots$, $T_{i_{s+1}}=\left\{x, x_{i_{s+1}}\right\}$ with $i_{1}<\ldots<i_{s+1}$.

We claim that every $y \neq x$ meets at most $s T_{i}$'s such that $i \neq i_{1}, \ldots, i_{s+1}$. If not, there exist $s+1$ sets $T_{j_{1}}=\left\{y, y_{j_{1}}\right\}, \ldots, T_{j_{s+1}}=\left\{y, y_{j_{s+1}}\right\}$ with $j_{1}<\ldots<j_{s+1}$ containing y. Assume $i_{1}<j_{1}$ (a dual argument works if $j_{1}<i_{1}$). Since $S_{i_{1}} \cap T_{i_{1}}=\emptyset$, $x \notin T_{i_{1}}$ and since $S_{i_{1}}$ meets all other $T_{i_{k}}, S_{i_{1}}=\left\{x_{i_{2}}, \ldots, x_{i_{s+1}}\right\}$. If $y \in T_{i_{1}}, y$ belongs to $(s+2) T_{i}$'s in contradiction to Lemma 3.3. Thus $\left|S_{i_{1}}\right|>s$, a contradiction. This proves the claim and the lemma follows easily.

We can now conclude the proof of (3) in the case $\left|S_{1} \cap S_{2}\right|=a>0$. Consider a 2 -set T_{i} with $i \geqslant 3$. Since T_{i} meets S_{1} and S_{2}, either T_{i} meets $S_{1} \cap S_{2}$, or T_{i} meets $S_{1} \backslash S_{2}$ and $S_{2} \backslash S_{1}$. By Lemma 3.4, there are at most ($a s+1$) T_{i} 's of the first type and at most $(s-a)^{2} T_{i}$'s of the second type. It follows that

$$
p(s)-2 \leqslant(s-a)^{2}+a s+1
$$

and hence $p(s) \leqslant s^{2}+a^{2}-a s+3 \leqslant s^{2}-s+4$, since $1 \leqslant a \leqslant s-1$.
Two different upper bounds were promised for $p(s)$. Here is the second one, which seems to be rather unsatisfying, since it depends on $n=|Q|$. In fact, as will be shown later, this new bound is better than the first one for $s>\lfloor n / 2\rfloor$.

Proposition 3.5 Let $a=\lfloor n /(n-s)\rfloor$. Then

$$
p(s) \leqslant \frac{1}{2} n s+a=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a
$$

if $n-s$ divides n, and

$$
p(s) \leqslant\binom{ a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1
$$

if $n-s$ does not divide n.

Proof. Denote by N_{i} the number of 2-sets meeting S_{j} for $j<i$ but not meeting S_{i}. Note that the conditions of Problem P' just say that $N_{i}>0$ for all $i \leqslant p(s)$. The idea of the proof is contained in the following formula

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant p(s)} N_{i} \leqslant\binom{ n}{2} \tag{1}
\end{equation*}
$$

This is clear since the number of 2 -subsets of Q is $\binom{n}{2}$. The next lemma provides a lower bound for N_{i}.

Lemma 3.6 Let $Z_{i}=\bigcap_{j<i} S_{j} \backslash S_{i}$ and $\left|Z_{i}\right|=z_{i}$. Then $N_{i} \geqslant\binom{ z_{i}}{2}+z_{i}\left(n-s-z_{i}\right)$.
Proof. Indeed, any 2-set contained in Z_{i} and any 2-set consisting of an element of Z_{i} and of an element of $Q \backslash\left(S_{i} \cup Z_{i}\right)$ meets all S_{j} for $j<i$ but does not meet S_{i}.

We now prove the proposition. First of all we claim that

$$
\bigcup_{1 \leqslant i \leqslant p(s)} Z_{i}=Q
$$

If not,

$$
Q \backslash\left(\cup Z_{i}\right)=\bigcap_{1 \leqslant i \leqslant s(p)} S_{i}
$$

is nonempty, and one can select an element x in this set. Let T be a 2 -set containing x and S be an s-set such that $S \cap T=\emptyset$. Then the two sequences $S_{1}, \ldots, S_{p(s)}, S$ and $T_{1}, \ldots, T_{p(s)}, T$ satisfy the conditions of Problem P^{\prime} in contradiction to the definition of $p(s)$. Thus the claim holds and since all Z_{i} 's are pairwise disjoint:

$$
\begin{equation*}
\sum z_{i}=n \tag{2}
\end{equation*}
$$

It now follows from (1) that

$$
\begin{equation*}
p(s) \leqslant\binom{ n}{2}-\sum_{1 \leqslant i \leqslant p(s)}\left(N_{i}-1\right) \tag{3}
\end{equation*}
$$

Since $N_{i}>0$ for all i, Lemma 3.6 provides the following inequality:

$$
\begin{equation*}
p(s) \leqslant\binom{ n}{2}-\sum_{z_{i}>0} f\left(z_{i}\right) \tag{4}
\end{equation*}
$$

where $f(z)=\binom{z}{2}+z(n-s-z)-1$.
Thus, it remains to find the minimum of the expression $\sum f\left(z_{i}\right)$ when the z_{i} 's are submitted to the two conditions
(a) $\sum z_{i}=n$ (see (2)) and
(b) $0<z_{i} \leqslant n-s$ (because $Z_{i} \subset Q \backslash S_{i}$).

Consider a family $\left(z_{i}\right)$ reaching this minimum and which furthermore contains a minimal number α of z_{i} 's different from $(n-s)$.

We claim that $\alpha \leqslant 1$. Assume to the contrary that there exist two elements different from $n-s$, say z_{1} and z_{2}. Then an easy calculation shows that

$$
\begin{array}{ll}
f\left(z_{1}+z_{2}\right) \leqslant f\left(z_{1}\right)+f\left(z_{2}\right) & \text { if } z_{1}+z_{2} \leqslant n-s \\
f(n-s)+f\left(z_{1}+z_{2}-(n-s)\right) \leqslant f\left(z_{1}\right)+f\left(z_{2}\right) & \text { if } z_{1}+z_{2}>n-s
\end{array}
$$

Thus replacing z_{1} and z_{2} by $z_{1}+z_{2}$ - in the case $z_{1}+z_{2} \leqslant n-s-$ or by ($n-s$) and $z_{1}+z_{2}-(n-s)$ - in the case $z_{1}+z_{2}>n-s$ - leads to a family $\left(z_{i}^{\prime}\right)$ such that $\sum f\left(z_{i}^{\prime}\right) \leqslant \sum f\left(z_{i}\right)$ and containing at most $(\alpha-1)$ elements z_{i}^{\prime} different from $n-s$, in
contradiction to the definition of the family $\left(z_{i}\right)$. Therefore $\alpha=1$ and the minimum of $f\left(z_{i}\right)$ is obtained for

$$
z_{1}=\cdots=z_{\alpha}=n-s \quad \text { if } n=a(n-s)
$$

and for

$$
z_{1}=\cdots=z_{\alpha}=n-s, z_{\alpha+1}=r \quad \text { if } n=a(n-s)+r \text { with } 0<r<n-s
$$

It follows from inequality (4) that

$$
\begin{array}{ll}
p(s) \leqslant\binom{ n}{2}-a f(n-s) & \text { if } n=a(n-s), \\
p(s) \leqslant\binom{ n}{2}-a f(n-s)-f(r) & \text { if } n=a(n-s)+r \text { with } 0<r<n-s
\end{array}
$$

where $f(z)=\binom{n}{2}+z(n-z)-1$.
Proposition 3.5 follows by a routine calculation.
We now compare the two upper bound for $p(s)$ obtained in Propositions 3.2 and 3.5 for $2 \leqslant s \leqslant n-2$.

Case 1. $2 \leqslant s \leqslant(n / 2)-1$.
Then $a=1$ and Proposition 3.5 gives $p(s) \leqslant s^{2}+2$. Clearly $s^{2}-s+4$ is a better upper bound.
Case 2. $s=n / 2$.
Then $a=2$ and Proposition 3.5 gives $p(s) \leqslant s^{2}+2$. Again $s^{2}-s+4$ is better.
Case 3. $(n+1) / 2 \leqslant s \leqslant(2 n-1) / 3$.
Then $a=2$ and Proposition 3.5 gives

$$
\begin{aligned}
p(s) & \leqslant 3 s^{2}-3 n s+n^{2}+3=s^{2}-s+4+(n-s-1)(n-2 s+1) \\
& \leqslant s^{2}-s+4
\end{aligned}
$$

Case 4. $2 n / 3 \leqslant s$.
Then $a \geqslant 3$ and Proposition 3.5 gives

$$
\begin{aligned}
p(s) & \leqslant\binom{ a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1 \\
& \leqslant s^{2}-s+\frac{1}{2} a(a-1)(n-s)^{2}-((a-1)(n-s)-1) s+a+1
\end{aligned}
$$

Since $s \leqslant(1-a)(n-s)$, a short calculation shows that

$$
p(s) \leqslant s^{2}-s+4-\frac{1}{2}(a-1)(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3)
$$

Since $a \geqslant 3,-\frac{1}{2}(a-1) \leqslant-1$ and thus

$$
p(s) \leqslant s^{2}-s+4-(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3),
$$

and it is not difficult to see that for $n-s \geqslant 2$,

$$
-(a-2)(n-s)^{2}+(a-1)(n-s)+(a-3) \leqslant 0
$$

Therefore Proposition 3.5 gives a better bound in this case.
The next theorem summarizes the previous results.

Theorem 3.7 Let $\mathcal{A}=(Q, A, \delta)$ be an automaton with n states, let $0 \leqslant s \leqslant n-2$ and let K be an $(n-s)$-subset of Q. If there exists a word w such that $|K w|<|K|$, one can choose w with length $\leqslant \varphi(n, s)$ where $a=\lfloor n /(n-s)\rfloor$ and

$$
\begin{aligned}
& \varphi(n, s)= \begin{cases}1 & \text { if } s=0, \\
3 & \text { if } s=3, \\
s^{2}-s+4 & \text { if } 3 \leqslant s \leqslant n / 2,\end{cases} \\
& \varphi(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a=\frac{1}{2} n s+a \\
& \varphi(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+1 \\
& \quad \text { if } n-s \text { does not divide } n \text { and } s>n / 2 .
\end{aligned}
$$

We can now prove the main results of this paper.
Theorem 3.8 Let \mathcal{A} be an automaton with n states and let $0 \leqslant k \leqslant n-1$. If there exists a word of rank $\leqslant n-k$ in \mathcal{A}, there exists such a word of length $\leqslant G(n, k)$ where

$$
G(n, k)= \begin{cases}k^{2} & \text { for } k=0,1,2,3 \\ \frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5 & \text { for } 4 \leqslant k \leqslant(n-2)+1 \\ 9+\sum_{3 \leqslant s \leqslant k-1} \varphi(n, s) & \text { for } k \geqslant(n+3) / 2\end{cases}
$$

Observe that in any case

$$
G(n, k) \leqslant \frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5
$$

Table 1 gives values of $G(n, k)$ for $0 \leqslant k \leqslant n \leqslant 12$.

$k \backslash n$	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	4	9	19	34	56	85	125	173	235	310
2		0	1	4	9	19	35	57	89	128	180	244
3			0	1	4	9	19	35	59	90	133	186
4				0	1	4	9	19	35	59	93	135
5					0	1	4	9	19	35	59	93
6						0	1	4	9	19	35	59
7							0	1	4	9	19	35
8								0	1	4	9	19
9									0	1	4	9
10										0	1	4
11											0	1
12												0

Figure 1: Values of $G(n, k)$ for $0 \leqslant k \leqslant n \leqslant 12$.

Proof. Assume that there exists a word w of rank $\leqslant n-k$ in \mathcal{A}. Since Conjecture (C) has been proved for $k \leqslant 3$, we may assume $k \geqslant 4$ and there exists a word w_{1} of length $\leqslant 9$ such that $Q w_{1}=K_{1}$ satisfies $\left|K_{1}\right| \leqslant n-3$. It suffices now to apply the method decribed at the beginning of this section which consists of using Theorem 3.7 repetitively. This method shows that one can find a word of rank $\leqslant n-k$ in \mathcal{A} of length
$\leqslant 9+\sum_{3 \leqslant s \leqslant k-1} \varphi(n, s)=G(n, k)$. In particular, $\varphi(n, s)=s^{2}-s+4$ for $s \leqslant n / 2$ and thus

$$
G(n, k)=\frac{1}{3} k^{3}-k^{2}+\frac{14}{3} k-5 \quad \text { for } 4 \leqslant k \leqslant(n-2)+1
$$

It is interesting to have an estimate of $G(n, k)$ for $k=n-1$.
Theorem 3.9 Let \mathcal{A} be an automaton with n states. If there exists a word of rank 1 in \mathcal{A}, there exists such a word of length $\leqslant F(n)$ where

$$
F(n)=\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) n^{3}+o\left(n^{3}\right) .
$$

Note that this bound is better than the bound in $\frac{7}{27} n^{3}$, since $7 / 27 \simeq 0.2593$ and $\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) \simeq 0.2258$.

Proof. Let $h(n, s)=\binom{a+1}{2} s^{2}+\left(1-a^{2}\right) n s+\binom{a}{2} n^{2}+a+\varepsilon(s)$, where

$$
\varepsilon(s)= \begin{cases}0 & \text { if } n=a(n-s) \\ 1 & \text { if } n-s \text { does not divide } n .\end{cases}
$$

The above calculations have shown that for $3 \leqslant s \leqslant n / 2$,

$$
s^{2}-s+4 \leqslant h(n, s) \leqslant s^{2}+2
$$

Therefore

$$
\sum_{0 \leqslant s \leqslant n / 2} \varphi(n, s) \sim 9+\sum_{3 \leqslant s \leqslant n-2} s^{2} \sim \frac{1}{24} n^{3} \sim \sum_{0 \leqslant s \leqslant n / 2} h(n, s)
$$

It follows that

$$
\begin{aligned}
F(n)=G(n, n-1) & =\sum_{0 \leqslant s \leqslant n-2} h(n, s)+o\left(n^{3}\right) \\
& =\sum_{0 \leqslant s \leqslant n-1} h(n, s)+o\left(n^{3}\right)
\end{aligned}
$$

A new calculation shows that

$$
h(n, n-s)=n^{2}+(\lfloor n / s\rfloor+1)\left(\frac{1}{2}\lfloor n / s\rfloor s^{2}-s n+1\right)-\varepsilon(n-s)
$$

Therefore

$$
F(n)=\sum_{1 \leqslant i \leqslant 6} T_{i}(n)+o\left(n^{3}\right)
$$

where

$$
\begin{array}{ll}
T_{1}=\sum_{s=1}^{n} n^{2}=n^{3}, & T_{4}=-n \sum_{s=1}^{n}\lfloor n / s\rfloor s \\
T_{1}=\frac{1}{2} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2}, & T_{5}=-n \sum_{s=1}^{n} s, \\
T_{3}=\frac{1}{2} \sum_{s=1}^{n}\lfloor n / s\rfloor s, & T_{6}=\sum_{s=1}^{n}\lfloor n / s\rfloor s+1-\varepsilon(n-s) .
\end{array}
$$

Clearly $T_{5}=-\frac{1}{2} n^{3}+o\left(n^{3}\right)$ and $T_{6}=o\left(n^{3}\right)$. The terms T_{2}, T_{3} and T_{4} need a separate study.

Lemma 3.10 We have $T_{3}=\frac{1}{6} \zeta(3) n^{3}+o\left(n^{3}\right)$ and $T_{4}=-\frac{1}{2} \zeta(2) n^{3}+o\left(n^{3}\right)$, where $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see [7, p. 117, Theorem 6.29 and p. 121, Theorem 6.34])

$$
\text { (a) } \begin{aligned}
\sum_{s=1}^{n}\lfloor n / s\rfloor s & =\sum_{s=1}^{n} \sum_{d=1}^{\lfloor n / s\rfloor} s=\frac{1}{2} \sum_{s=1}^{n}\left(\lfloor n / s\rfloor^{2}+\lfloor n / s\rfloor\right) \\
& =\frac{1}{2} n^{2} \sum_{k=1}^{n} \frac{1}{k^{2}}+o\left(n^{2}\right)=\frac{1}{2} \zeta(2) n^{2}+o\left(n^{2}\right)
\end{aligned}
$$

Therefore $T_{4}=-\frac{1}{2} \zeta(2) n^{3}+o\left(n^{3}\right)$.

$$
\text { (b) } \begin{aligned}
\sum_{s=1}^{n}\lfloor n / s\rfloor s^{2} & =\sum_{s=1}^{n} \sum_{d=1}^{\lfloor n / s\rfloor} s^{2}=\frac{1}{2} \sum_{s=1}^{n}\left(2\lfloor n / s\rfloor^{3}+3\lfloor n / s\rfloor^{2}+\lfloor n / s\rfloor\right) \\
& =\frac{1}{3} n^{3}\left(\sum_{k=1}^{n} \frac{1}{s^{3}}\right)+o\left(n^{3}\right)=\frac{1}{3} \zeta(3)^{3}+o\left(n^{3}\right)
\end{aligned}
$$

Therefore $T_{3}=\frac{1}{6} \zeta(3) n^{3}+o\left(n^{3}\right)$.

Lemma 3.11 We have $T_{2}=\frac{1}{6}(2 \zeta(2)-\zeta(3)) n^{3}+o\left(n^{3}\right)$.
Proof. It is sufficient to prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2}=\frac{1}{6}(2 \zeta(2)-\zeta(3))
$$

Fix an integer n_{0}. Then

$$
\begin{aligned}
\frac{1}{n^{3}} \sum_{j=1}^{n_{0}} j^{2} \sum_{s=\lfloor n /(j+1)\rfloor+1}^{\lfloor n / j\rfloor} s^{2} & \leqslant \frac{1}{n^{3}} \sum_{s=1}^{n}\lfloor n / s\rfloor^{2} s^{2} \\
& \leqslant \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor+\frac{1}{n^{3}} \sum_{j=1}^{n_{0}} j^{2} \sum_{s=\lfloor n /(j+1)\rfloor+1}^{\lfloor n / j\rfloor} s^{2}
\end{aligned}
$$

Indeed, $\lfloor n / s\rfloor s \leqslant n$ implies the inequality

$$
\frac{1}{n^{3}} \sum_{s=1}^{\left\lfloor n /\left(n_{0}+1\right)\right\rfloor}\left\lfloor\frac{n}{s}\right\rfloor^{2} s^{2} \leqslant \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor
$$

Now

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{\lfloor n /(j+1)\rfloor+1 \leqslant s \leqslant\lfloor n / j\rfloor} s^{2}=\frac{1}{3}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right)
$$

It follows that for all $n_{0} \in \mathbb{N}$

$$
\begin{aligned}
\frac{1}{2} \sum_{j=1}^{n_{0}} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right) & \leqslant \liminf _{n \rightarrow \infty} \frac{1}{n^{3}} \sum\left\lfloor\frac{n}{k}\right\rfloor^{2} k^{2} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n^{3}} \sum\left\lfloor\frac{n}{k}\right\rfloor^{2} k^{2} \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor+\frac{1}{3} \sum_{j=1}^{n_{0}} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right)
\end{aligned}
$$

Since

$$
\limsup _{n \rightarrow \infty} \frac{1}{n}\left\lfloor\frac{n}{n_{0}+1}\right\rfloor=\frac{1}{n_{0}+1}
$$

We obtain for $n_{0} \rightarrow \infty$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n^{3}} \sum_{s=1}^{n}\left\lfloor\frac{n}{s}\right\rfloor^{2} s^{2} & =\frac{1}{3} \sum_{j=1}^{\infty} j^{2}\left(\frac{1}{j^{3}}-\frac{1}{(j+1)^{3}}\right) \\
& =\frac{1}{3} \sum_{j=1}^{\infty} \frac{2 j-1}{j^{3}}=\frac{1}{3}(2 \zeta(2)-\zeta(3))
\end{aligned}
$$

Finally we have

$$
\begin{aligned}
F(n) & =n^{3}\left(1+\frac{1}{6}(2 \zeta(2)-\zeta(3))+\frac{1}{6} \zeta(3)-\frac{1}{2} \zeta(2)-\frac{1}{2}\right)+o\left(n^{3}\right) \\
& =\left(\frac{1}{2}-\frac{1}{6} \zeta(2)\right) n^{3}+o\left(n^{3}\right) \\
& =\left(\frac{1}{2}-\frac{\pi^{2}}{36}\right) n^{3}+o\left(n^{3}\right)
\end{aligned}
$$

which concludes the proof of Theorem 3.9.

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.
(2) Problem P' has been solved by P. Frankl. The conjectured estimate $p(s, t)=\binom{s+t}{s}$ is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists a word of rank $\leqslant n-k$ in \mathcal{A} there exists such a word of length $\leqslant \frac{1}{6} k(k+1)(k+2)-1$ (for $3 \leqslant k \leqslant n-1$).

References

[1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1973. Deuxième édition, Collection Dunod Université, Série Violette, No. 604.
[2] J. Černý, Poznámka k. homogénnym experimentom s konecnými automatmi, Mat. fyz. čas SAV 14 (1964), 208-215.
[3] J. Černý, Communication, in Bratislava Conference on Cybernetics, 1969.
[4] J. Černý, A. Pirická and B. Rosenauerova, On directable automata, Kybernetica 7 (1971), 289-298.
[5] G. Hansel, Baionnettes et cardinaux, Discrete Math. 39,3 (1982), 331-335.
[6] Z. Kohavi, Switching and finite automata theory, McGraw Hill, New-York, 1970.
[7] W. J. LeVeque, Topics in number theory. Vols. 1 and 2, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956.
[8] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications vol. 17, Cambridge University Press, 1983.
[9] D. Perrin and M.-P. Schützenberger, A conjecture on sets of differences of integer pairs, J. Combin. Theory Ser. B 30,1 (1981), 91-93.
[10] J.-E. Pin, Le problème de la synchronisation. Contribution à l'étude de la conjecture de Cerný, Thèse de 3ème cycle, Université Paris VI, 1978.
[11] J.-E. Pin, Sur les mots synchronisants dans un automate fini, Elektron. Informationsverarb. Kybernet. 14 (1978), 293-303.
[12] J.-E. Pin, Sur un cas particulier de la conjecture de Černý, in 5th ICALP, Berlin, 1978, pp. 345-352, LNCS n ${ }^{\circ} 62$, Springer.
[13] J.-E. Pin, Utilisation de l'algèbre linéaire en théorie des automates, in Actes du 1er Colloque AFCET-SMF de Mathématiques Appliquées, pp. 85-92, AFCET, 1978.
[14] J.-E. Pin, Le problème de la synchronisation et la conjecture de Černý, in Noncommutative structures in algebra and geometric combinatorics, A. De luca (ed.), pp. 37-48, Quaderni de la Ricerca Scientifica vol. 109, CNR, Roma, 1981.
[15] J.-E. Pin and I. Simon, A note on the triangle conjecture, J. Combin. Theory Ser. A 32,1 (1982), 106-109.
[16] P. H. Starke, Eine Bemerkung über homogene Experimente., Elektr. Informationverarbeitung und Kyb. 2 (1966), 257-259.
[17] P. H. Starke, Abstrakte Automaten, V.E.B. Deutscher Verlag der Wissenschaften, Berlin, 1969.

