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On two combinatorial problems arising from

automata theory

Jean-Éric Pin
LITP, CNRS and Université Paris 6 (France)

Abstract

We present some partial results on the following conjectures arising from au-

tomata theory. The first conjecture is the triangle conjecture due to Perrin and

Schützenberger. Let A = {a, b} be a two-letter alphabet, d a positive integer and

let Bd = {aibaj | 0 6 i + j 6 d}. If X ⊂ Bd is a code, then |X| 6 d + 1. The

second conjecture is due to Černý and the author. Let A be an automaton with

n states. If there exists a word of rank 6 n − k in A, there exists such a word of

length 6 k2.

1 Introduction

The theory of automata and formal langauges provides many beautiful combinatorial
results and problems which, I feel, ought to be known. The book recently published:
Combinatorics on words, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some im-
portance in automata theory. The first one, recently proposed by Perrin and Schützen-
berger [9], was originally stated in terms of coding theory. Let A = {a, b} be a two-letter
alphabet and let A∗ be the free monoid generated by A. Recall that a subset C of A∗

is a code whenever the submonoid of A∗ generated by C is free with base C; i.e., if the
relation c1 · · · cp = c′1 · · · c′q, where c1, . . . , cp, c

′
1, . . . , c

′
q are elements of C implies p = q

and ci = c′i for 1 6 i 6 p. Set, for any d > 0, Bd = {aibaj | 0 6 i + j 6 d}. One can
now state the following conjecture:

The triangle conjecture. Let d > 0 and X ⊂ Bd. If X is a code, then |X | 6 d + 1.

The term “The triangle conjecture” originates from the following construction: if
one represents every word of the form aibaj by a point (i, j) ∈ N

2, the set Bd is
represented by the triangle {(i, j) ∈ N

2 | 0 6 i + j 6 d}. The second conjecture was
originally stated by Černý (for k = n−1) [3] and extended by the author. Recall that a
finite automaton A is a triple (Q, A, δ), where Q is a finite set (called the set of states),
A is a finite set (called the alphabet) and δ : Q × A → Q is a map. Thus δ defines an
action of each letter of A on Q. For simplicity, the action of the letter a on the state
q is usually denoted by qa. This action can be extended to A∗ (the free monoid on A)
by the associativity rule

(qw)a = q(wa) for all q ∈ Q, w ∈ A∗, a ∈ A

Thus each word w ∈ A∗ defines a map from Q to Q and the rank of w in A is the
integer Card{qw | q ∈ Q}.

One can now state the following

Conjecture (C). Let A be an automaton with n states and let 0 6 k 6 n− 1. If there

exists a word of rank 6 n − k in A, there exists such a word of length 6 k2.
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2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle {(i, j) ∈ N
2 | 0 6

i+ j 6 d} to describe some properties of X . For example, “X has at most two columns
occupied” means that there exist two integers 0 6 i1 < i2 such that X is contained in
ai1ba∗ ∪ ai2ba∗.

Only a few partial results are known on the triangle conjecture. First of all the
conjecture is true for d 6 9; this result has been obtained by a computer, somewhere
in Italy.

In [5], Hansel computed the number tn of words obtained by concatenation of n
words of Bd. He deduced from this the following upper bound for |X |.

Theorem 2.1 Let X ⊂ Bd. If X is a code, then |X | 6 (1 + (1/
√

2))(d + 1).

Perrin and Schützenberger proved the following theorem in [9].

Theorem 2.2 Assume that the projections of X on the two components are both equal

to the set {0, 1, . . . , r} for some r 6 d. If X is a code, then |X | 6 r + 1.

Two further results have been proved by Simon and the author [15].

Theorem 2.3 Let X ⊂ Bd be a set having at most two rows occupied. If X is a code,

then |X | 6 d + 1.

Theorem 2.4 Assume there is exactly one column of X ⊂ Bd with two points or more.

If X is a code, then |X | 6 d + 1.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then

|X | 6 d + 1.

Proof. Indeed assume that |X | > d + 1. Then one of the columns of X has two
points or more. Thus one can find a set Y ⊂ X such that: (1) all columns but
one of Y contain exactly one point; (2) the exceptional column contains two points.
Since |Y | > d + 1, Y is a non-code by Theorem 2.4. Thus X is a non-code.

Of course statements 2.3, 2.4, 2.5 are also true if one switches “row” and “column”.

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case k = n−1:
“Let A be an automaton with n states containing a word of rank 1. Then there exists
such a word of length 6 (n − 1)2.”

First of all the bound (n − 1)2 is sharp. In fact, let An = (Q, {a, b}, δ), where
Q = {0, 1, . . . , n− 1}, ia = i and ib = i + 1 for i 6= n− 1, and (n − 1)a = (n− 1)b = 0.

Then the word (abn−1)n−2a has rank 1 and length (n− 1)2 and this is the shortest
word of rank 1 (see [3] or [10] for a proof).
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Moreover, the conjecture has been proved for n = 1, 2, 3, 4 and the following upper
bounds have been obtained

2n − n − 1 (Černý [2], 1964)

1

2
n3 − 3

2
n2 + n + 1 (Starke [16, 17], 1966)

1

2
n3 − n2 +

n

2
(Kohavi [6], 1970)

1

3
n3 − 3

2
n2 +

25

6
n − 4 (Černý, Pirická et Rosenauerová [4], 1971)

7

27
n3 − 17

18
n2 +

17

6
n − 3 (Pin [11], 1978)

For the general case, the bound k2 is also the best possible (see [10]) and the conjecture
has been proved for k = 0, 1, 2, 3 [10]. The best known upper bound was

1

3
k3 − 1

3
k2 +

13

6
k − 1[11]

We prove here some improvements of these results. We first sketch the idea of the
proof. Let A = (Q, A, δ) be an automaton with n states. For K ⊂ Q and w ∈ A∗, we
shall denote by Kw the set {qw | q ∈ K}. Assume there exists a word of rank 6 n− k
in A. Since the conjecture is true for k 6 3, one can assume that k > 4. Certainly
there exists a letter a of rank 6= n. (If not, all words define a permutation on Q and
therefore have rank n).Set K1 = Qa. Next look for a word m1 (of minimal length)
such that K2 = K1m1 satisfies |K2| < |K1|. Then apply the same procedure to K2,
etc. until one of the |Ki’s satisfies |Ki| 6 n − k:

Q
a−→ K1

m1−→ K2
m2−→ · · · Kr−1

mr−1−→ Kr |Kr| 6 n − k

Then am1 · · ·mr−1 has rank 6 n − k.
The crucial step of the procedure consists in solving the following problem:

Problem P. Let A = (Q, A, δ) be an automaton with n states, let 2 6 m 6 n and let
K be an m-subset of Q. Give an upper bound of the length of the shortest word w (if
it exists) such that |Kw| < |K|.

There exist some connections between Problem P and a purely combinatorial Problem
P’.

Problem P’. Let Q be an n-set and let s and t be two integers such that s + t 6 n.
Let (Si)16i6p and (Ti)16i6p be subsets of Q such that

(1) For 1 6 i 6 p, |Si| = s and |Ti| = t.

(2) For 1 6 i 6 p, Si ∩ Ti = ∅.
(3) For 1 6 j < i 6 p, Sj ∩ Ti = ∅.

Find the maximum value p(s, t) of p.

We conjecture that p(s, t) =
(

s+t
s

)

=
(

s+t
t

)

. Note that if (3) is replaced by

(3′) For 1 6 i 6= j 6 p, Si ∩ Tj = ∅.
then the conjecture is true (see Berge [1, p. 406]).

We now state the promised connection between Problems P and P’.

Proposition 3.1 Let A = (Q, A, δ) be an automaton with n states, let 0 6 s 6 n − 2
and let K be an (n − s)-subset of Q. If there exists a word w such that |Kw| < |K|,
one can choose w with length 6 p(s, 2).
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Proof. Let w = a1 · · · ap be a shortest word such that |Kw| < |K| = n − s and
define K1 = K, K2 = K1a1, . . . , Kp = Kp−1ap−1. Clearly, an equality of the form
|Ki| = |Ka1 · · · ai| < |K| for some i < p is inconsistent with the definition of w.
Therefore |K1| = |K2| = · · · = |Kp| = (n − s). Moreover, since |Kpap| < |Kp|, Kp

contains two elements xp and yp such that xpap = ypap.
Define 2-sets Ti = {xi, yi} ⊂ Ki such that xiai = xi+1 and yiai = yi+1 for 1 6 i 6

p − 1 (the Ti are defined from Tp = {xp, yp}). Finally, set Si = Q \ Ki. Thus we have

(1) For 1 6 i 6 p, |Si| = s and |Ti| = 2.

(2) For 1 6 i 6 p, Si ∩ Ti = ∅.
Finally assume that for some 1 6 j < i 6 p, Si ∩ Ti = ∅, i.e., {xi, yi} ⊂ Ki. Since

xiai · · · ap = yiai · · ·ap,

it follows that
|Ka1 · · · aj−1ai · · · ap| = |Kjai · · ·ap| < n − s

But the word a1 · · · aj−1ai · · · ap is shorter that w, a contradiction.
Thus the condition (3), for 1 6 j < i 6 p, Sj∩Ti 6= ∅, is satisfied, and this concludes

the proof.

I shall give two different upper bounds for p(s) = p(2, s).

Proposition 3.2

(1) p(0) = 1,

(2) p(1) = 3,

(3) p(s) 6 s2 − s + 4 for s > 2.

Proof. First note that the Si’s (Ti’s) are all distinct, because if Si = Sj for some j < i,
then Si ∩ Ti = ∅ and Si ∩ Tj 6= ∅, a contradiction.

Assertion (1) is clear.
To prove (2) assumet that p(1) > 3. Then, since T4∩S1 6= ∅, T4∩S2 6= ∅, T4∩S3 6= ∅,

two of the three 1-sets S1, S2, S3 are equal, a contradiction.
On the other hand, the sequence S1 = {x1}, S2 = {x2}, S3 = {x3}, T1 = {x2, x3},

T2 = {x1, x3}, T3 = {x1, x2} satisfies the conditions of Problem P’. Thus p(1) = 3.
To prove (3) assume at first that S1 ∩ S2 = ∅ and consider a 2-set Ti with i > 4.

Such a set meets S1, S2 and S3. Since S1 and S2 are disjoint sets, Ti is composed as
follows:

• either an element of S1 ∩ S3 with an element of S2 ∩ S3,

• or an element of S1 ∩ S3 with an element of S2 \ S3,

• or an element of S1 \ S3 with an element of S2 ∩ S3.

Therefore

p(s) − 3 6 |S1 ∩ S3||S2 ∩ S3| + |S1 ∩ S3||S2 \ S3| + |S1 \ S3||S2 ∩ S3|
= |S1 ∩ S3||S2| + |S1||S2 ∩ S3| − |S1 ∩ S3||S2 ∩ S3|
= s(|S1 ∩ S3| + |S2 ∩ S3|) − |S1 ∩ S3||S2 ∩ S3|

Since S1, S2, S3 are all distinct, |S1∩S3| 6 s−1. Thus if |S1∩S3| = 0 or |S2∩S3| = 0
it follows that

p(s) 6 s(s − 1) + 3 = s2 − s + 3

If |S1 ∩ S3| 6= 0 and S2 ∩ S3| 6= 0, one has

|S1 ∩ S3||S2 ∩ S3| > |S1 ∩ S3||S2 ∩ S3| − 1,
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and therefore:

p(s) 6 3 + (s − 1)(|S1 ∩ S3| + |S2 ∩ S3|) + 1 6 s2 − s + 4,

since |S1 ∩ S3| + |S2 ∩ S3| 6 |S3| = s.
We now assume that a = |S1 ∩ S2| > 0, and we need some lemmata.

Lemma 3.3 Let x be an element of Q. Then x is contained in at most (s + 1) Ti’s.

Proof. If not there exist (s + 2) indices i1 < . . . < is+2 such that Tij
= {x, xij

} for
1 6 j 6 s + 2. Since Si1 ∩ Ti1 6= ∅, x /∈ Si1 . On the other hand, Si1 meets all Tij

for
2 6 j 6 s + 2 and thus the s-set Si1 has to contain the s + 1 elements xi2 , . . . , xis+2

, a
contradiction.

Lemma 3.4 Let R be an r-subset of Q. Then R meets at most (rs + 1) Ti’s.

Proof. The case r = 1 follows from Lemma 3.3. Assume r > 2 and let x be an element
of R contained in a maximal number Nx of Ti’s. Note that Nx 6 s + 1 by Lemma
3.3. If Nx 6 s for all x ∈ R, then R meets at most rs Ti’s. Assume there exists
an x ∈ R such that Nx = s + 1. Then x meets (s + 1) Ti’s, say Ti1 = {x, xi1}, . . . ,
Tis+1

= {x, xis+1
} with i1 < . . . < is+1.

We claim that every y 6= x meets at most s Ti’s such that i 6= i1, . . . , is+1. If
not, there exist s + 1 sets Tj1 = {y, yj1}, . . . , Tjs+1

= {y, yjs+1
} with j1 < . . . < js+1

containing y. Assume i1 < j1 (a dual argument works if j1 < i1). Since Si1 ∩ Ti1 = ∅,
x /∈ Ti1 and since Si1 meets all other Tik

, Si1 = {xi2 , . . . , xis+1
}. If y ∈ Ti1 , y belongs

to (s + 2) Ti’s in contradiction to Lemma 3.3. Thus |Si1 | > s, a contradiction. This
proves the claim and the lemma follows easily.

We can now conclude the proof of (3) in the case |S1 ∩ S2| = a > 0. Consider a
2-set Ti with i > 3. Since Ti meets S1 and S2, either Ti meets S1 ∩ S2, or Ti meets
S1 \ S2 and S2 \ S1. By Lemma 3.4, there are at most (as + 1) Ti’s of the first type
and at most (s − a)2 Ti’s of the second type. It follows that

p(s) − 2 6 (s − a)2 + as + 1

and hence p(s) 6 s2 + a2 − as + 3 6 s2 − s + 4, since 1 6 a 6 s − 1.

Two different upper bounds were promised for p(s). Here is the second one, which
seems to be rather unsatisfying, since it depends on n = |Q|. In fact, as will be shown
later, this new bound is better than the first one for s > ⌊n/2⌋.

Proposition 3.5 Let a = ⌊n/(n − s)⌋. Then

p(s) 6
1

2
ns + a =

(

a + 1

2

)

s2 + (1 − a2)ns +

(

a

2

)

n2 + a

if n − s divides n, and

p(s) 6

(

a + 1

2

)

s2 + (1 − a2)ns +

(

a

2

)

n2 + a + 1

if n − s does not divide n.
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Proof. Denote by Ni the number of 2-sets meeting Sj for j < i but not meeting Si.
Note that the conditions of Problem P’ just say that Ni > 0 for all i 6 p(s). The idea
of the proof is contained in the following formula

∑

16i6p(s)

Ni 6

(

n

2

)

(1)

This is clear since the number of 2-subsets of Q is
(

n
2

)

. The next lemma provides a
lower bound for Ni.

Lemma 3.6 Let Zi =
⋂

j<i Sj \ Si and |Zi| = zi. Then Ni >
(

zi

2

)

+ zi(n − s − zi).

Proof. Indeed, any 2-set contained in Zi and any 2-set consisting of an element of Zi

and of an element of Q \ (Si ∪ Zi) meets all Sj for j < i but does not meet Si.
We now prove the proposition. First of all we claim that

⋃

16i6p(s)

Zi = Q

If not,

Q \ (∪Zi) =
⋂

16i6s(p)

Si

is nonempty, and one can select an element x in this set. Let T be a 2-set containing
x and S be an s-set such that S ∩ T = ∅. Then the two sequences S1, . . . , Sp(s), S and
T1, . . . , Tp(s), T satisfy the conditions of Problem P’ in contradiction to the definition
of p(s). Thus the claim holds and since all Zi’s are pairwise disjoint:

∑

zi = n (2)

It now follows from (1) that

p(s) 6

(

n

2

)

−
∑

16i6p(s)

(Ni − 1) (3)

Since Ni > 0 for all i, Lemma 3.6 provides the following inequality:

p(s) 6

(

n

2

)

−
∑

zi>0

f(zi) (4)

where f(z) =
(

z
2

)

+ z(n− s − z) − 1.
Thus, it remains to find the minimum of the expression

∑

f(zi) when the zi’s are
submitted to the two conditions

(a)
∑

zi = n (see (2)) and

(b) 0 < zi 6 n − s (because Zi ⊂ Q \ Si).

Consider a family (zi) reaching this minimum and which furthermore contains a mini-
mal number α of zi’s different from (n − s).

We claim that α 6 1. Assume to the contrary that there exist two elements different
from n − s, say z1 and z2. Then an easy calculation shows that

f(z1 + z2) 6 f(z1) + f(z2) if z1 + z2 6 n − s,

f(n − s) + f(z1 + z2 − (n − s)) 6 f(z1) + f(z2) if z1 + z2 > n − s.

Thus replacing z1 and z2 by z1 + z2 — in the case z1 + z2 6 n − s — or by (n − s)
and z1 + z2 − (n− s) — in the case z1 + z2 > n− s — leads to a family (z′i) such that
∑

f(z′i) 6
∑

f(zi) and containing at most (α − 1) elements z′i different from n− s, in
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contradiction to the definition of the family (zi). Therefore α = 1 and the minimum
of f(zi) is obtained for

z1 = · · · = zα = n − s if n = a(n − s),

and for

z1 = · · · = zα = n − s, zα+1 = r if n = a(n − s) + r with 0 < r < n − s.

It follows from inequality (4) that

p(s) 6

(

n

2

)

− af(n − s) if n = a(n − s),

p(s) 6

(

n

2

)

− af(n − s) − f(r) if n = a(n − s) + r with 0 < r < n − s.

where f(z) =
(

n
2

)

+ z(n− z) − 1.
Proposition 3.5 follows by a routine calculation.

We now compare the two upper bound for p(s) obtained in Propositions 3.2 and
3.5 for 2 6 s 6 n − 2.

Case 1. 2 6 s 6 (n/2) − 1.
Then a = 1 and Proposition 3.5 gives p(s) 6 s2 + 2. Clearly s2 − s + 4 is a better

upper bound.

Case 2. s = n/2.
Then a = 2 and Proposition 3.5 gives p(s) 6 s2 + 2. Again s2 − s + 4 is better.

Case 3. (n + 1)/2 6 s 6 (2n − 1)/3.
Then a = 2 and Proposition 3.5 gives

p(s) 6 3s2 − 3ns + n2 + 3 = s2 − s + 4 + (n − s − 1)(n − 2s + 1)

6 s2 − s + 4

Case 4. 2n/3 6 s.
Then a > 3 and Proposition 3.5 gives

p(s) 6

(

a + 1

2

)

s2 + (1 − a2)ns +

(

a

2

)

n2 + a + 1

6 s2 − s +
1

2
a(a − 1)(n − s)2 − ((a − 1)(n − s) − 1)s + a + 1

Since s 6 (1 − a)(n − s), a short calculation shows that

p(s) 6 s2 − s + 4 − 1

2
(a − 1)(a − 2)(n − s)2 + (a − 1)(n − s) + (a − 3)

Since a > 3, − 1
2 (a − 1) 6 − 1 and thus

p(s) 6 s2 − s + 4 − (a − 2)(n − s)2 + (a − 1)(n − s) + (a − 3),

and it is not difficult to see that for n − s > 2,

− (a − 2)(n − s)2 + (a − 1)(n − s) + (a − 3) 6 0

Therefore Proposition 3.5 gives a better bound in this case.
The next theorem summarizes the previous results.
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Theorem 3.7 Let A = (Q, A, δ) be an automaton with n states, let 0 6 s 6 n− 2 and

let K be an (n − s)-subset of Q. If there exists a word w such that |Kw| < |K|, one

can choose w with length 6 ϕ(n, s) where a = ⌊n/(n − s)⌋ and

ϕ(n, s) =











1 if s = 0,

3 if s = 3,

s2 − s + 4 if 3 6 s 6 n/2,

ϕ(n, s) =

(

a + 1

2

)

s2 + (1 − a2)ns +

(

a

2

)

n2 + a =
1

2
ns + a

if n = a(n − s) and s > n/2,

ϕ(n, s) =

(

a + 1

2

)

s2 + (1 − a2)ns +

(

a

2

)

n2 + a + 1

if n − s does not divide n and s > n/2.

We can now prove the main results of this paper.

Theorem 3.8 Let A be an automaton with n states and let 0 6 k 6 n − 1. If there

exists a word of rank 6 n− k in A, there exists such a word of length 6 G(n, k) where

G(n, k) =











k2 for k = 0, 1, 2, 3,
1
3k3 − k2 + 14

3 k − 5 for 4 6 k 6 (n − 2) + 1,

9 +
∑

36s6k−1 ϕ(n, s) for k > (n + 3)/2.

Observe that in any case

G(n, k) 6
1

3
k3 − k2 +

14

3
k − 5

Table 1 gives values of G(n, k) for 0 6 k 6 n 6 12.

k\n 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 4 9 19 34 56 85 125 173 235 310
2 0 1 4 9 19 35 57 89 128 180 244
3 0 1 4 9 19 35 59 90 133 186
4 0 1 4 9 19 35 59 93 135
5 0 1 4 9 19 35 59 93
6 0 1 4 9 19 35 59
7 0 1 4 9 19 35
8 0 1 4 9 19
9 0 1 4 9
10 0 1 4
11 0 1
12 0

Figure 1: Values of G(n, k) for 0 6 k 6 n 6 12.

Proof. Assume that there exists a word w of rank 6 n − k in A. Since Conjecture
(C) has been proved for k 6 3, we may assume k > 4 and there exists a word w1 of
length 6 9 such that Qw1 = K1 satisfies |K1| 6 n − 3. It suffices now to apply the
method decribed at the beginning of this section which consists of using Theorem 3.7
repetitively. This method shows that one can find a word of rank 6 n−k in A of length
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6 9 +
∑

36s6k−1 ϕ(n, s) = G(n, k). In particular, ϕ(n, s) = s2 − s + 4 for s 6 n/2 and
thus

G(n, k) =
1

3
k3 − k2 +

14

3
k − 5 for 4 6 k 6 (n − 2) + 1

It is interesting to have an estimate of G(n, k) for k = n − 1.

Theorem 3.9 Let A be an automaton with n states. If there exists a word of rank 1
in A, there exists such a word of length 6 F (n) where

F (n) = (
1

2
− π2

36
)n3 + o(n3).

Note that this bound is better than the bound in 7
27n3, since 7/27 ≃ 0.2593 and

(1
2 − π2

36 ) ≃ 0.2258.

Proof. Let h(n, s) =
(

a+1
2

)

s2 + (1 − a2)ns +
(

a
2

)

n2 + a + ε(s), where

ε(s) =

{

0 if n = a(n − s)

1 if n − s does not divide n.

The above calculations have shown that for 3 6 s 6 n/2,

s2 − s + 4 6 h(n, s) 6 s2 + 2.

Therefore

∑

06s6n/2

ϕ(n, s) ∼ 9 +
∑

36s6n−2

s2 ∼ 1

24
n3 ∼

∑

06s6n/2

h(n, s)

It follows that

F (n) = G(n, n − 1) =
∑

06s6n−2

h(n, s) + o(n3)

=
∑

06s6n−1

h(n, s) + o(n3)

A new calculation shows that

h(n, n − s) = n2 + (⌊n/s⌋ + 1)(
1

2
⌊n/s⌋s2 − sn + 1) − ε(n − s)

Therefore

F (n) =
∑

16i66

Ti(n) + o(n3)

where

T1 =

n
∑

s=1

n2 = n3, T4 = −n

n
∑

s=1

⌊n/s⌋s

T1 =
1

2

n
∑

s=1

⌊n/s⌋2s2, T5 = −n

n
∑

s=1

s,

T3 =
1

2

n
∑

s=1

⌊n/s⌋s, T6 =
n
∑

s=1

⌊n/s⌋s + 1 − ε(n − s).

Clearly T5 = − 1
2n3 + o(n3) and T6 = o(n3). The terms T2, T3 and T4 need a separate

study.
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Lemma 3.10 We have T3 = 1
6ζ(3)n3 + o(n3) and T4 = − 1

2ζ(2)n3 + o(n3), where

ζ(s) =
∑∞

n=1 n−s is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see
[7, p. 117, Theorem 6.29 and p. 121, Theorem 6.34])

(a)

n
∑

s=1

⌊n/s⌋s =

n
∑

s=1

⌊n/s⌋
∑

d=1

s =
1

2

n
∑

s=1

(⌊n/s⌋2 + ⌊n/s⌋)

=
1

2
n2

n
∑

k=1

1

k2
+ o(n2) =

1

2
ζ(2)n2 + o(n2)

Therefore T4 = − 1
2ζ(2)n3 + o(n3).

(b)
n
∑

s=1

⌊n/s⌋s2 =
n
∑

s=1

⌊n/s⌋
∑

d=1

s2 =
1

2

n
∑

s=1

(2⌊n/s⌋3 + 3⌊n/s⌋2 + ⌊n/s⌋)

=
1

3
n3

(

n
∑

k=1

1

s3

)

+ o(n3) =
1

3
ζ(3)3 + o(n3)

Therefore T3 = 1
6 ζ(3)n3 + o(n3).

Lemma 3.11 We have T2 = 1
6 (2ζ(2) − ζ(3))n3 + o(n3).

Proof. It is sufficient to prove that

lim
n→∞

1

n3

n
∑

s=1

⌊n/s⌋2s2 =
1

6
(2ζ(2) − ζ(3))

Fix an integer n0. Then

1

n3

n0
∑

j=1

j2

⌊n/j⌋
∑

s=⌊n/(j+1)⌋+1

s2
6

1

n3

n
∑

s=1

⌊n/s⌋2s2

6
1

n

⌊

n

n0 + 1

⌋

+
1

n3

n0
∑

j=1

j2

⌊n/j⌋
∑

s=⌊n/(j+1)⌋+1

s2

Indeed, ⌊n/s⌋s 6 n implies the inequality

1

n3

⌊n/(n0+1)⌋
∑

s=1

⌊n

s

⌋2

s2
6

1

n

⌊

n

n0 + 1

⌋

Now

lim
n→∞

1

n3

∑

⌊n/(j+1)⌋+16s6⌊n/j⌋

s2 =
1

3

(

1

j3
− 1

(j + 1)3

)

10



It follows that for all n0 ∈ N

1

2

n0
∑

j=1

j2

(

1

j3
− 1

(j + 1)3

)

6 lim inf
n→∞

1

n3

∑

⌊n

k

⌋2

k2

6 lim sup
n→∞

1

n3

∑

⌊n

k

⌋2

k2

6 lim sup
n→∞

1

n

⌊

n

n0 + 1

⌋

+
1

3

n0
∑

j=1

j2

(

1

j3
− 1

(j + 1)3

)

Since

lim sup
n→∞

1

n

⌊

n

n0 + 1

⌋

=
1

n0 + 1

We obtain for n0 → ∞,

lim
n→∞

1

n3

n
∑

s=1

⌊n

s

⌋2

s2 =
1

3

∞
∑

j=1

j2

(

1

j3
− 1

(j + 1)3

)

=
1

3

∞
∑

j=1

2j − 1

j3
=

1

3
(2ζ(2) − ζ(3))

Finally we have

F (n) = n3

(

1 +
1

6
(2ζ(2) − ζ(3)) +

1

6
ζ(3) − 1

2
ζ(2) − 1

2

)

+ o(n3)

=

(

1

2
− 1

6
ζ(2)

)

n3 + o(n3)

=

(

1

2
− π2

36

)

n3 + o(n3)

which concludes the proof of Theorem 3.9.

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.

(2) Problem P’ has been solved by P. Frankl. The conjectured estimate p(s, t) =
(

s+t
s

)

is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists
a word of rank 6 n−k in A there exists such a word of length 6

1
6k(k+1)(k+2)−1

(for 3 6 k 6 n − 1).

References

[1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1973. Deuxième édition, Col-
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du 1er Colloque AFCET-SMF de Mathématiques Appliquées, pp. 85–92, AFCET,
1978.

[14] J.-E. Pin, Le problème de la synchronisation et la conjecture de Černý, in Non-
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