The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa Année : 2008

The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions

Résumé

We first prove a weighted inequality of Moser-Trudinger type depending on a parameter, in the two-dimensional Euclidean space. The inequality holds for radial functions if the parameter is larger than -1. Without symmetry assumption, it holds if and only if the parameter is in the interval (-1,0]. The inequality gives us some insight on the symmetry breaking phenomenon for the extremal functions of the Hardy-Sobolev inequality, as established by Caffarelli-Kohn-Nirenberg, in two space dimensions. In fact, for suitable sets of parameters (asymptotically sharp) we prove symmetry or symmetry breaking by means of a blow-up method. In this way, the weighted Moser-Trudinger inequality appears as a limit case of the Hardy-Sobolev inequality.
Fichier principal
Vignette du fichier
Dolbeault-Esteban-Tarantello.pdf (355.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00139062 , version 1 (29-03-2007)

Identifiants

Citer

Jean Dolbeault, Maria J. Esteban, Gabriella Tarantello. The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions. Annali della Scuola Normale Superiore di Pisa, 2008, 7, pp.313-341. ⟨hal-00139062⟩
138 Consultations
86 Téléchargements

Altmetric

Partager

More