Regular holomorphic webs of codimension one - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Regular holomorphic webs of codimension one

Résumé

A holomorphic $d$-web of codimension one in dimension $n$ is "regular", if it satisfies to some condition of genericity. In dimension at least 3, any such web has a rank bounded from above by a number $\pi'(n,d)$ strictly smaller than the bound $\pi(n,d)$ of castelnuovo. This bound $\pi'(n,d)$ is optimal. Moreover, for some $d$'s, the abelian relations are sections with vanishing covariant derivative of some bundle with a connection, the curvature of which generalizes the Blaschke curvature. In dimension 2, we recover results of A. Hénaut.
Fichier principal
Vignette du fichier
Relab3.pdf (215 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00137470 , version 1 (20-03-2007)
hal-00137470 , version 2 (13-10-2008)

Identifiants

Citer

Vincent Cavalier, Daniel Lehmann. Regular holomorphic webs of codimension one. 2007. ⟨hal-00137470v1⟩
79 Consultations
224 Téléchargements

Altmetric

Partager

More