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Regular holomorphic webs of codimension one

by Vincent CAVALIER and Daniel LEHMANN

.
Version du 16/03/2007

Abstract

Given a d-web of codimension one on a holomorphic n-dimensional manifold M0 (d > n), we
assume that, at any point of M0, the d hyperplanes tangent to the local foliations at a point of
M0 are distinct, and that there exists n of them in general position (but we do not require any n

of them to be in general position). For such a web, we shall define some specific analytical subset
S of M0 which -generically- has dimension ≤ n− 1 or is empty : in this case the web will be said
“regular”; when -exceptionally- the set S is n-dimensional, the web will be said “special”.

We prove that the rank of regular d-webs has an upper-bound π′(n, d) which, for n ≥ 3, is
strictly smaller than the bound π(n, d) of Castelnuovo (the maximal arithmetical genus of an
algebraic curve of degree d in the complex n-dimensional projective space Pn).

Let c(n, h) denote the dimension of the vector space of homogeneous polynomials of degree h

in n variables. The number π′(n, d) is then equal
- to 0 for d < c(n, 2),

- and to
∑

h≥1

(
d−c(n, h)

)+
for d ≥ c(n, 2), (a)+ denoting the number sup (a, 0) for any a ∈Z.

For any regular d-web with d = c(n, h) for some h ≥ 2, we define a holomorphic connection
on some holomorphic bundle E of rank π′(n, d) over M0 \S , such that the set of abelian relations
inject into the set of sections of E the covariant derivative of which vanishes: the curvature of this
connection, which generalizes the Blaschke curvature, is then an obstruction for the rank of the
web to have the maximal possible value π′(n, d).

When n = 2, any web is regular and we recover the results of [He1].

Other examples are given. In particular, any affine regular d-web in dimension n has maximal
rank π′(n, d), hence the optimality of this bound.
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Regular holomorphic webs of codimension one

Vincent Cavalier Daniel Lehmann

1 Introduction

A holomorphic d-web of codimension one on a n-dimensional holomorphic manifold M being given
(d > n), we denote by M0 the open set in M where the web is locally defined by d holomorphic
foliations Fi of codimension one, all non-singular and with tangent spaces to the leaves distinct at
any point.

We shall say that the web is in strong general position if any subset of n leaves among the d
leaves through a point of M0 are in general position. If we assume only that there exists a subset of
n leaves among the d leaves through a point of M0 which are in general position (but not necessarily
any n of them), we shall say that the web is in weak general position. Most of our results below
will require only this weaker condition1.

On an open set U in M0 sufficiently small for the web to be defined as above by the data of d
distinct local foliations Fi (such an open set is called “open set of distinguishability”), an abelian
relation is the data of a family (ωi)i of holomorphic 1-forms ωi, (1 ≤ i ≤ d) such that

(i) each ωi is closed,

(ii) the vector fields tangent to the local foliation Fi belong to the kernel of ωi,

(iii) the sum
∑d

i=1 ωi vanishes.

The set of abelian relations on U (resp. the set of germs of abelian relation at a point m of M0)
has the structure of a finite dimensional complex vector space, whose dimension is called the rank of
the web on U (resp. at m). If the web is in strong general position, Hénaut proved in [He2] that its
rank at a point does not depend on this point: abelian relations have then the structure of a local
system of coefficients2. When we require only the web to be in weak general position, we shall call
“rank of the web” the maximum3 of the rank at each point of M0.

After Chern ([C]), the rank of a d-web of codimension one in a n-dimensional manifold is always
upper-bounded, when the web is in strong general position, by the number π(n, d) of Castelnuovo (the
maximum of the arithmetical genus of an algebraic curve of degree d in the n-dimensional complex
projective space Pn). On the other hand, the rank of an algebraic d-web in Pn (i.e. the web whose
leaves are the hyperplanes belonging to some algebraic curve Γ of degree d in the dual projective space
P
′
n) is equal to the arithmetical genus of Γ: this is, after duality, a theorem coming back to Abel.

Therefore, the rank of a web may reach the bound π(n, d).

When n = 2, the Blaschke curvature has been defined by Blaschke ([B]) for d = 3, and generalized
by Hénaut ([He1]) for any d ≥ 3 : Hénaut proved in fact, at least locally

- that the set Rd−4 of formal abelian relations at order d − 3 for a d-web in dimension 2 is a
holomorphic vector bundle E of rank π(2, d) = (d − 1)(d − 2)/2 on M0, as well as the set Rd−3 of

1More generally, if there exists ℓ and not more of the leaves through a point which are in general position (ℓ ≤ n),
there exists locally a holomorphic foliation G of codimension ℓ, such that the web is locally the pullback of a d-web
of codimension 1 on a ℓ-dimensional manifold transversal to G. Then, many of the results below remain valid, after
replacing n by ℓ.

2In [He3], he generalized this result in higher codimension.
3Notice that, in this case, the rank at a point is an upper-semicontinuous function of the point.
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formal abelian relations at order d− 2, the projection Rd−3 → Rd−4 being an isomorphism,

- that the ∞-jets and the germs of abelian relations are completely defined by their projection onto
E , the projections Rk+1 → Rk being injective for k ≥ d− 4,

- and that there exists a unique holomorphic connection ∇ on E such that a section of E is the
section jd−3u of some abelian relation u if and only if its covariant drivative ∇

(
jd−3u

)
vanishes. The

curvature of this connection generalizes the Blaschke curvature, and is an obstruction for the rank of
the web to be maximal.

The first aim of this paper was to generalize the theory of Hénaut for n ≥ 2. But we observed by
the way

- that such a generalization is only possible for “regular” d-webs (see definition below), and for
the values of d equal, for some h ≥ 2, to the dimension c(n, h) of the vector space of all homogeneous
polynomials of degree h in n variables with scalar coefficients,

- that, whatever be d
(
not necessarily belonging to the previous sequence

(
c(n, h)

)
h
), the rank of

all regular d-webs is at most equal to some bound π′(n, d) which, for n ≥ 3, is strictly smaller than
the bound π(n, d) of Castelnuovo.

More precisely, we define, for any d-web which is in weak general position4, an analytical subset
S of M0 which has generically a dimension ≤ n − 1 or is empty : in this case, the web will be said
“regular”. Exceptionally, S may reach the dimension n : in this case, the web will be said “special”.

For any d, (d > n), denote by k0 the integer (≥ 1) such that c(n, k0) ≤ d < c(n, k0 + 1), and set :

π′(n, d) = 0 when d < c(n, 2), (k0 = 1),

=
∑k0
h=1

(
d− c(n, h)

)
when d ≥ c(n, 2), (k0 ≥ 2).

The main results of this paper are the two following :

Theorem 1.1 The rank of any regular d-web on some n-dimensional manifold M0 is upperbounded

by π′(n, d). This bound is optimal.

Theorem 1.2 If d = c(n, k0), and if the d-web is regular, there exists a holomorphic vector bundle

E of rank π′(n, d) over M0 \ S and a holomorphic connection ∇ on E, such that the vector space of

germs of abelian relations at a point of M0 \ S inject into the vector space of germs of sections of E
which have a vanishing covariant derivative. This injection is a bijection when the rank of the web

reaches the maximal possible value π′(n, d) : the curvature of this connection is then an obstruction

for the rank of the web to reach this value π′(n, d).

For n = 2, we recover the results of [He1]: it happens in fact
- that S is always empty, so that all webs are regular,
- that the upper-bounds π(2, d) and π′(2, d) coincide, both being equal to (d− 1)(d− 2)/2,
- that any d, d ≥ 3, may be written d = c(2, k0), with k0 = d− 1.

For n ≥ 3, S may be non-empty, π′(n, d) is strictly smaller than π(n, d), and not any d may be
written c(n, h). Moreover, the fact that dim S must be equal to n for the rank of the web to reach
the bound π(n, d) is a criterium of practical interest.

While we essentially generalize the method initiated by Hénaut ([He1]) in the case n = 2 (looking
at the symbols of the successive prolongations of the differential operator the kernel of which is the
space of abelian relations), we also give in the last section a shorter proof of theorem 1-1 in the
particular case of webs which are in strong general position (using the affine web tangent to a web at
a point).

4This property will be included once for all in the definition of a regular web.
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Significative examples will be given in the last section. We observe in particular that all affine
regular d-webs in dimension n have rank π′(n, d) (hence the optimality of this bound), and are moreover
algebraic. For n = 3 and d = 6, we also give an example on C3, with coordinates (x, y, z), depending
on some holomorphic function ψ of the variable y. There is some scalar h such that the analytical
set S has for equation ψ(y) = h2. The web is then regular for ψ non identically equal to h2, S being
even empty when ψ is constant (6= h2). We then prove that the web has rank 2 or 3

(
= π′(3, 6)

)
,

according to the Blaschke curvature which vanishes when (ψ′)2 + (h2 − ψ)ψ” does, and in particular
when ψ is a constant (different of h2). In the special case ψ ≡ h2, a fourth abelian relation appears,
linearly independant of the three first ones, in such a way that the web has then rank 4 = π(3, 6).

We thank A. Hénaut for very helpful conversations and correspondance.

2 Notations and backgrounds

Most of the results in this section are well known or easy to prove, so that we shall omit their proof.

2.1 Some algebraic notations

Let Rh[X1, · · · , Xn] denote the vector space of homogeneous polynomials of degree h in n variables,
with scalar coefficients (in fact, the field of scalars does not matter). Denote by c(n, h) its dimension(
h+ n− 1

h

)
. The monomials XΛ = (X1)

λ1 . · · · (Xn)λn make a basis, indexed by the set P(n, h) of

the partitions L = (λ1, λ2, · · · , λn) of h, with 0 ≤ λi ≤ h for any i = 1, · · · , n, and
∑n

i=1 λi = h. The
number h will be also denoted by |L|, and is called the height of L.

Denoting by (a)+ the number sup (a, 0) for any real number a, remember ([GH]) that the number

π(n, d) =
∑

h≥1

(
d− h(n− 1) − 1

)+
,

called the bound of Castelnuovo, is the maximum of the arithmetical genus of an algebraic curve of
degree d in the complex projective space Pn.

Define
π′(n, d) = 0 when d < c(n, 2),

=
∑

h≥1

(
d− c(n, h)

)+
when d ≥ c(n, 2).

Lemma 2.1

(i] For n ≥ 3, the inequality π′(n, d) < π(n, d) holds.

(ii) The equality π′(2, d) = π(2, d) holds.

2.2 Connections adapted to a differential operator :

Let E → V be a holomorphic vector bundle on a holomorphic manifold V . Remember the exact
sequence of holomorphic vector bundles

0 → T ∗V ⊗ E → J1E → E → 0.

A C∞-connection ∇ on E (resp. a holomorphic connection if any) is a C∞-splitting (resp. a holo-
morphic splitting if any) of this exact sequence :

0 → T ∗V ⊗ E
β
←−
−→ J1E

α
←−
−→ E → 0.
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If u is a C∞ or holomorphic section of E, its covariant derivative is given by

∇u = β(j1u).

A (holomorphic) linear differential operator of order one on the holomorphic manifold V is a morphism
of (holomorphic) vector bundles D : J1E → F , for some vector bundles E and F on V , to which we
associate the map D : u 7→ D(j1u) from the sections of E into the sections of F . The kernel R of D
is a subset of J1E, which is the set of the formal solutions at order one of the equation Du = 0.

Lemma 2.2 Given a connection ∇ on E, seen as a lift α of the projection J1E → E, the two following

assertions are equivalent :

(i) The lift α takes values into R.

(ii) The sections u of E with vanishing covariant derivative ∇u = 0 are solutions of the equation

Du = 0.

Such a connection on E will be said “adapted” to the differential operator D. If, moreover, any
solution of the equation Du = 0 has a vanishing covariant derivative with respect to ∇, the adapted
connection ∇ will be said “completely adapted” to D. In particular, we get

Lemma 2.3 The two following assertions are equivalent :

(i) The set R is a sub-vector bundle of J1E, and the restriction Φ : R → E of the natural projection

J1E → E is an isomorphism of holomorphic vector bundles,

(ii) There is a holomorphic connection on E which is completely adapted to D.

Moreover, if such a completely adapted connection exists, it is necessary unique and defined by the

composition of the inclusion R ⊂ J1E with Φ−1 : E
∼=
→ R.

2.3 The differential operator for abelian relations

Let W be a d-web in weak general position on a holomorphic n-dimensional manifold M0, with d > n.

We define a holomorphic vector bundle A of rank d − n over M0 by defining the sheaf of its
holomorphic sections. Let U be first an open set of distinguishability. Then the OU -module Γ(U,A)
is defined as the module of families (ωi)1≤i≤d of holomorphic 1-forms ωi on U such that

(i) for any i = 1, . . . , d, the kernel of ωi contains the tangent space Ti to Fi (it is therefore equal
to it when ωi is not zero),

(ii) the sum
∑d
i=1 ωi is zero.

We define similarly the germs at a point, hence a sheaf which is easily seen to be a locally-free
OM0 -module : it is therefore the sheaf of sections of a holomorphic vector bundle A.

Definition 2.4 The vector bundle A of rank d− n so defined will be called the Blaschke bundle of

the web.

Let us define in a similar way a holomorphic vector bundle B over M0, of rank (d− 1)n(n− 1)/2
by defining the sections belonging to Γ(U,B) as the families (̟i)1≤i≤d of holomorphic 2-forms ̟i on

U such that
∑d
i=1̟i = 0.

Definition 2.5 We call abelian relation of the web any holomorphic section u of the Blaschke bundle

A, which is solution of the equation Du = 0, the map D denoting the linear first order differential

operator (ωi) 7→ (dωi) from A to B.
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The differential operator D may still be seen as a linear morphism D : J1A→ B, and the kernel R0

of this morphism is the space of “formal abelian relations at order one”. Hence, a necessary condition
for an abelian relation to exist above an open subset U of M0 is that U belongs to the image of R0

by the projection J1A→ A. We shall see that it generically not the case for d < c(n, 2).

More generally, denote by Dk : Jk+1A → JkB the kth prolongation of D. The kernel Rk of the
morphism Dk is the space of formal abelian relations at order k+1. Abelian relations may still be seen
as the holomorphic sections u of A such that jk+1u be in Rk. Let πk+1 denote the natural projection
Rk+1 → Rk. Let σk+1 : Sk+2(T ∗M0) ⊗ A → Sk+1(T ∗M0) ⊗ B be the symbol of Dk+1, gk+1 be the
kernel of this symbol, and Kk its cokernel. After snake’s lemma, there is a natural map ∂k : Rk → Kk

in such a way that we get a commutative diagram5, with all lines and columns exact:

0 0 0 Rk
↓ ↓ ↓ ↓ ∂k

0 → gk+1 → Sk+2(T ∗M0) ⊗A
σk+1
−→ Sk+1(T ∗M0) ⊗B → Kk → 0

↓ ↓ ↓ ↓

0 → Rk+1 → Jk+2A
Dk+1
−→ Jk+1B → coker Dk+1 → 0

↓ πk+1 ↓ ↓ ↓

0 → Rk → Jk+1A
Dk−→ JkB → coker Dk → 0

↓ ∂k ↓ ↓ ↓
Kk 0 0 0

In this diagram, we allow k to take the value −1, with the convention R−1 = A, J−1B = 0.

In the sequel,

the index i will run from 1 to d,

the indices α, β, · · · will run from 1 to n− 1,

and the indices λ, µ, · · · will run from 1 to n.

For any holomorphic function a and local coordinates x, a′λ will denote the partial derivative
a′λ = ∂a

∂xλ
. More generally, for any partition L = (λ1, λ2, · · · , λn) of |L| =

∑
µ λµ, (L ∈ P(n, |L|) ), we

denote by (a)′
L

the corresponding higher order derivative (a)′
L

= ∂|L|a
(∂x1)λ1 ···(∂xn)λn

.

3 Definition of the analytical set S

This definition is different according to the inequalities d < c(n, 2) or d ≥ c(n, 2). However, in both
cases, this set will satisfy to the

Lemma 3.1 The set S is an analytical set which has generically a dimension ≤ n− 1 or is empty.

3.1 Definition of S in the case n < d < c(n, 2):

For n < d < c(n, 2), S will denote the subset of elements m ∈ M0 such that the vector space
(R0)m

= (π0)
−1(Am) has dimension at least 1. The proof of lemma 3-1 for d < c(n, 2) will be given

in the next section, after the description of the map π0.

Proof of theorem 1-1 in the case d < c(n, 2) : For d < c(n, 2), all regular d-webs of codimension

one have rank 0.

5Notice that the Rk’s, gk’s and Kk’s are not necessarily vector bundles : exactitude has to be understood as the
exactitude in the correspnding diagrams on the fibers at any point of M0.
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The fact that all regular d-webs have rank 0 for d < c(n, 2) on M0 \ S is a tautology, because of the
definition of S. Therefore, they still have rank 0 on all of M0, because of the semi-continuity of the
rank at a point.

QED

3.2 Definition of S in the case d ≥ c(n, 2)

Let ηi be an integrable 1-form defining the local foliation Fi of a d-web of codimension 1. For any
integer h ≥ 1, let (ηi)

h be the hth symetric power of ηi in the space Sh(T ∗M0) of homogeneous
polynomials of degree h on the complex tangent tangent bundle TM0. For any m ∈M0, let rh(m) be
the dimension of the subspace Lh(m) generated in Sh(T ∗mM0) by the (ηi)

h(m)’s with 1 ≤ i ≤ d (not
depending on the choice of the ηi’s). We have obviously the

Lemma 3.2 The following inequality holds :

rh(m) ≤ min
(
d, c(n, h)

)
.

In particular, r1 ≡ n, since we assume d > n and the web to be in weak general position. And rh ≡ d
for h > k0, where k0 denotes the integer such that

c(n, k0) ≤ d < c(n, k0 + 1).

Definition of S for d ≥ c(n, 2) (i.e. k0 ≥ 2) : Let Sh be the set of points m ∈ M0 such that

rh(m) < min
(
d, c(n, h)

)
, and set : S =

⋃k0
h=2 Sh.

Proof of lemma 3-1 for d ≥ c(n, 2) : Let (xλ)1≤λ≤n be a system of holomorphic local coordinates
near a point m0 of M0, and assume that the local foliation Fi is defined by∑

λ piλdxλ = 0. Then rh(m) is the rank of the matrix

Ph = ((C
(h)
i L))

i,L

of size d× c(n, h) at point m, where 1 ≤ i ≤ d, and L runs through the set P(n, h) of the partitions

L = (λ1, λ2, · · · , λn) of h (i.e.
∑n
s=1 λs = h), and where C

(h)
i L =

∏n
s=1 pi λs

. Thus, for 2 ≤ h ≤ k0, Sh is
locally defined by the vanishing of all determinants of size c(n, h) in Ph. Exceptionnaly, it may happen
that all of these determinants are identically 0, so that Sh will have dimension n. But generically, these
determinants will vanish on hypersurfaces or nowhere.

4 Computation of R0

Locally, the d-web is defined over M0 by a family of 1-forms ηi = dxn−
∑

α piα
(x) dxα, which we still

may write ηi = −
∑
λ piλ

(x) dxλ with the convention p
in

≡ −1.

Lemma 4.1 The integrability conditions may be written locally :

(piλ)
′
µ − (piµ)

′
λ + piµ(piλ)

′
n − piλ(piµ)

′
n ≡ 0 for all triples (i, λ, µ).

Proof : Let η = −
∑
λ pλ

(x) dxλ be a holomorphic 1-form. Then

η ∧ dη =
∑

λ<µ<ν

[
pλ

(
(pν)

′
µ − (pµ)

′
ν

)
+ pµ

(
(pλ)

′
ν − (pν)

′
λ

)
+ pν

(
(pµ)

′
λ − (pλ)

′
µ

)]
dxλ ∧ dxµ ∧ dxν .

Then, when pn ≡ −1, we observe that the vanishing of all terms in dxλ ∧ dxµ ∧ dxn implies the
vanishing of all other terms, hence the lemma.
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QED

A section (ωi)i of A is locally given by the d functions fi such that ωi = fi
(∑

λ piλ
(x) dxλ

)

satisfying to the identities

(Eλ)
∑

i

p
iλ
fi ≡ 0 for any λ,

hence, by derivation,

(Eλ,µ)
∑

i

(p
iλ
fi)
′
µ ≡ 0 for any λ, µ.

Lemma 4.2 For the family (fi)i to define an abelian relation, it is necessary and sufficient that the

identities be satisfied

(Fiα) (fi)
′
α ≡ −

(
fipiα

)′
n

for all pairs (i, α).

Proof : In fact, a holomorphic 1-form f
(∑

λ pλ
(x) dxλ

)
is closed iff (fpλ)

′
µ = (fpµ)

′
λ for all pairs

(λ, µ) such that λ < µ. But, because of the integrability conditions, it is sufficient that this relation
be satisfied when µ = n, for it to be satisfied with all other µ’s.

QED

Lemma 4.3 When the family (fi)i defines an abelian relation, the identities (Eλ,µ) and (Eµ,λ) are

the same.

Proof : In fact, under the assumption, (fipiλ)
′
µ ≡ (fipiµ)

′
λ for all pairs (λ, µ), hence the lemma by

summation with respect to i.
QED

The identity (fi)
′
α ≡ −

(
fipiα

)′
n

means that it is sufficient for knowing the (fi)
′
n for knowing the

other partial derivatives (fi)
′
α of a family (fi)i defining an abelian relation.

Hence, writing wi = (fi)
′
n, and combining (Eλ,µ) and (Fiα), we get :

Corollary 4.4 The elements of R0 above a given element (fi)i in A map bijectively onto the solutions

of the linear system Σ0.

(Ẽλ,µ)
∑

i

p
iλ
p

iµ
wi ≡

∑

i

fi
[
(p

iλ
)′µ − p

iλ
(p

iλ
)′n

]

of c(n, 2) equations (Ẽλ,µ) with d unknown wi.

Notice that the matrix of the system Σ0 is the matrix P2 = ((C
(2)
i L))

i,L
seen in the previous section.

Proof of the lemma 3-1 in the case d < (c(n, 2) : Generically, the system Σ0 has rank d. Hence
S is defined locally by the vanishing of all characteristic determinants which are generically not all
identically zero. If Σ0 has a rank r smaller than d, the vanishing of all determinants of size r+1, · · · , d
in the matrix P2 have to be added to the vanishing of all charateristic determinants.

QED

5 Computation of Rk (k ≥ 1) :

For any pair of multi-indices of derivation L = (λ1, · · · , λs, · · · , λn), and H = (h1, h2, · · · , hn), L+H
will denote the multi-index (λ1 + h1, λ2 + h2, · · · , λn + hn). We define similarly L−H if λµ ≥ hµ for

8



all µ’s. For any λ, 1λ will denote the muti-index with all λµ’s equal to zero for µ 6= λ and λλ = 1. By
definition the height |L| of L is the sum

∑
s λs.

By derivation of the identities (Eλ), the elements of JkA are characterized by the identities

(Eλ,L)
∑

i

(p
iλ
fi)
′
L ≡ 0 for any λ and for any multi-index L of height |L| ≤ k.

Lemma 5.1 If (fi)i is an abelian relation, the relation (Eλ,L) remains unchanged by permutation of

all the indices of L ∪ {λ}.

Proof : The left hand term of this identity is obviously symetric with respect to the indices of L. Thus,
it is sufficient to prove that the identities (Eλ,µ) and (Eµ,λ) are the same, which we know already.

QED

The identity (Eλ,L) above will now be denoted by (EH), where H = L+ 1λ.

Lemma 5.2
(i) If (fi)i is an abelian relation, all partial derivatives (fi)

′
L may be written as a linear combination

(F̃iL) ˜(fi)′L ≡

|L|∑

k=0

D
(k)
i L . (fi)

′
nk

of fi and of its partial derivatives (fi)
′
nk = ∂(k)fi

(∂xn)k with respect to the only variable xn, with coefficients

D
(k)
i L not depending on the fi’s.

(ii) If L = (λ1, · · · , λs, · · · , λn), the coefficient D
(|L|)
i L of highest order is equal to (−1)|L|

∏n
s=1 p

λs

i
,

i.e. is equal to (−1)|L|C
(|L|)
i L .

Proof : We get the lemma by derivation of the identities (Fiα) and an obvious induction on the height
|L| of L.

QED

The lemma above means that it is sufficient to know the (fi)
′
nk+1 to know the other partial deriva-

tives (fi)
′
L in the (k + 1)-jet of a family (fi)i defining an abelian relation.

Hence, writing wi = (fi)
′
nk+1

, and combining (EL and (F̃iL), we get :

Corollary 5.3 The elements of Rk above a given element a
(k−1)
0 in Rk−1 map bijectively onto the

solutions of a linear system Σk of c(n, k + 2) equations (ẼL) with d unknown wi

(ẼL)
∑

i

C
(k+2)
i L wi ≡ ΦL

(
a
(k−1)
0

)
,

where L runs through the set P(n, k+2) of partitions of k+2, and where the second member ΦL
(
a
(k−1)
0

)

depends only on a
(k−1)
0 ∈ Rk−1. In particular, the symbol σk of Dk is defined by the matrix

Pk+2 = ((C
|L|
i L))

i,L
,

1 ≤ i ≤ d, |L| = k + 2, of size d× c(n, k + 2).

Theorem 5.4 Assume the d-web to be regular. The map πk : Rk → Rk−1 is surjective for k ≤ k0 − 2
and injective for k > k0−2 above the open set U = M0\S of M0. For k ≤ k0−2, Rk is a holomorphic

bundle of rank
∑k+2

h=1

(
d− c(n, h)

)
over M0 \ S.
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Proof : In fact, Pk+2 is precisely the matrix of the system Σk. Thus, for k ≤ k0 − 2 and off Sk, the
space of solutions of Σk is an affine space of dimension d− c(n, k + 2).

QED

Proof of theorem 1-1 in the case d > c(n, 2) : The rank of a regular d-web is at most equal to the

number

π′(n, d) =

k0∑

h=1

(
d− c(n, h)

)
.

For k > k0−2, the symbol σk is necessarily injective off S. In fact, the matrix defining this symbol
in the corollary above contains the matrix defining σk−1 when we choose the coordinates and the forms
ηi’s so that pin ≡ −1. Hence, since gk0−2 = 0 off S, gk = 0 off S for all k ≥ k0 − 2. Consequently,
above a given element in Rk0−2, there exists at most one infinite jet of abelian relation, hence one
germ of abelian relation since the framework is analytic. We deduce that the rank of the web is at
most π′(n, d) off S, hence everywhere (semi-continuity of the rank). We shall see in the next section
that any regular affine web in strong general position has rank π′(n, d), hence the optimality.

QED

Proof of theorem 1-2 : When d = c(n, k0), E = Rk0−3|M0\S is a vector bundle of rank π′(n, d),
and πk0−2 : Rk0−2 → Rk0−3 is an isomorphism of vector bundles over M0 \ S. Since Rk0−2, which
is equal to the intersection J1Rk0−3 ∩ Jk0−1A, is included into J1Rk0−3, the previous isomorphism
defines, after lemma 2-3, a natural holomorphic connection ∇ on E , such that the map u 7→ jk0−2u
from the sections of A into the sections of Jk0−2A induces an injective map from abelian relations on
M0 \ S into the set of sections of E with vanishing covariant derivative. In particular, for d = c(n, k0),
the rank of a regular d-web is π′(n, d) iff the curvature of the previous connexion vanishes: in this
case, every section of E with vanishing covariant derivative is conversely the (k0 − 2)-jet of an abelian
relation, since then the both spaces of germs at a point (abelian relations , and sections of E with
vanishing covariant derivative) have the same dimension π′(n, d).

QED

6 Examples

6.1 Case n = 2 :

We recover the results of A. Hénaut ([He1]). In fact, in this case :

- the set S is always empty (all determinants occuring in the computation of the symbols σk are
determinants of Van-der-Monde for k ≤ k0 − 2, vanishing nowhere on M0); thus, all webs are regular.

- any d is equal to c(2, d− 1),

- the rank
∑d−2

h=1

(
c(2, d− 1) − c(2, h)

)
of Rd−4 is equal to (d− 1)(d− 2)/2.

6.2 Case n = 3, d = 6 :

Use coordinates x, y, z on C3, with n = 3, and c(n, 2) = 6. Let a, b, c, e, h be five distinct com-
plex numbers, all different of 0, and let ψ be some holomorphic function of y. Let W be the 6-
web of codimension 1 on C3 defined by the 1-forms ηi = dz − pidx − qidy, 1 ≤ i ≤ 6, where :
(p1, q1) = (0, 0) , (p2, q2) = (a, a2) , (p3, q3) = (b, b2), (p4, q4) = (c, c2) , (p5, q5) = (e, e2) and
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(p6, q6) = (h, ψ). The system Σ0 is then equivalent to




a b c e
a2 b2 c2 e2

a3 b3 c3 e3

a4 b4 c4 e4







w2

w3

w4

w5


 =




0
0
0

f6.ψ
′


 ,

to which we add the equations (h2 − ψ)w6 = 0, and w1 + w2 + · · · + w6 = 0. The system is a system
of Cramer off the locus S which is

- the surface of equation ψ(y) = h2 in general,

- the empty set when ψ is any constant different of h2,

- all of C3 (the special case) for ψ ≡ h2.

Let’s precise the connection and its curvature for ψ 6= h2 in the two first cases (the regular case).

A section (fi) of A is defined by (f4, f5, f6), since (f1, f2, f3) can be deduced using the equations∑
i fi = 0,

∑
i pifi = 0 and

∑
i qifi = 0. Setting ∆ = abce(b−a)(c−a)(e−a)(c−b)(e−b)(e−c)(h2−ψ),

K = ψ′

∆(h2−ψ) , ∆4 = abe((b− a)(e− a)(e− b), and ∆5 = abc((b− a)(c− a)(c− b),we get :

w4 = −K∆4, w5 = K∆5, w6 = 0, hence u4 = cK∆4, u5 = −eK∆5, u6 = 0 and v4 = c2K∆4,
u5 = −e2K∆5, u6 = 0. With respect to the trivialization (σ4, σ5, σ6) of A given by
σ4 = (f4 ≡ 1, f5 ≡ 0, f6 ≡ 0), σ5 = (f4 ≡ 0, f5 ≡ 1, f6 ≡ 0) and σ6 = (f4 ≡ 0, f5 ≡ 0, f6 ≡ 1), the
matrix of the connection is :

ω =
ψ′

∆(h2 − ψ)




0 0 ∆4 η4
0 0 −∆5 η5
0 0 0


 ,

hence the curvature

Ω =
1

∆

( ψ′

h2 − ψ

)′



0 0 ∆4(dy ∧ dz + c dx ∧ dy)
0 0 −∆5(dy ∧ dz + e dx ∧ dy)
0 0 0


 .

We observe that σ4 and σ5 are linearly independant abelian relations. We knew it already since the
first integrals (z − cx− c2y) and (z − ex− e2y) of F4 and F5 respectively are linear combinations of
the first integrals z, (z − ax − a2y) and (z − bx − b2y) of F1, F2 and F3. Thus, when h2 − ψ does
not vanish, the rank of the 6-web is at least 2, and has the maximum possible value π′(3, 6) = 3 in

the regular case if and only if ψ′

h2−ψ is constant, that is if there exists two scalar constant C and D

(C 6= 0), such that
ψ(y) = h2 + CeDy,

in particular for ψ = constant (case D = 0). For given C and D as above, K = −D/∆, and
σ6 −K∆4σ4 +K∆5σ5 is an abelian relation (the function ψ occurs in the computation of f1, f2 and
f3 from f4 = −K∆4, f5 = K∆5 and f6 = 1).

The special case ψ ≡ h2 will be seen in the next subsection.

6.3 Regular affine webs and optimality of the bound π′(n, d) :

For any pair (n, d) with d > n, give d linear forms (l1, l2, · · · , ld). Let Fi be the foliation defined in C
n

by the parallel hyperplanes li = constant, and W be the d-web defined by these d foliations. Let k0

be the integer such that c(n, k0) ≤ d < c(n, k0 +1). Let P’n−1 denote the hyperplane at infinity of the
n-dimensional projective space Pn = Cn

∐
Pn−1 : the parallel hyperplanes of the pencil li = constant

meet at infinity along a hyperplane of Pn−1, i.e. define an element [li] of the dual projective space
P′n−1 .
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Remark 6.1 The web W on Cn extends to a web on Pn (with singularities) which is algebraic. It is
in fact dual to the union of d straight lines in the dual projective space P′n .

Definition 6.2 Such a web on Pn will be said an “affine d-web”, and it is said regular if its

restriction to Cn is regular.

Lemma 6.3 The two following properties are equivalent :

(i) The affine d-web above is regular.

(ii) For any h, (1 ≤ h ≤ k0), there exists c(n, h) points among the d points [li], which do not belong

to a same algebraic (reducible or not) hypersurface of degree h in P′n−1.

Proof : For d ≥ c(n, h), (h ≥ 1), assume that the matrix ((C
(h)
i L))

i,L
, 1 ≤ i ≤ d, |L| = h, of size

d × c(n, h) has rank < c(n, h). This means that the determinant of any square sub-matrix of size
c(n, h) vanishes. Saying that the determinant of the sub-matrix given for instance by the c(n, h) first
li’s vanishes means precisely that [l1], [l2], · · · , [lc(n,h)] belong to some hypersurface of degree h in P′n−1

(may be reducible), and same thing for any other subset of c(n, h) indices i. Hence the lemma.
QED

Theorem 6.4

(i) If the d points [li] are in general position in P′n−1 (i.e. if any n of the d linear forms li are

linearly independant), the above affine d-web has a rank ≥ π′(n, d).

(ii) It has exactly rank π′(n, d) iff it is regular.

Proof : For any h, consider the vector space Lh generated by the hth symetric products (li)
h of the

li’s, and denote by rh the dimension of this vector space. The rank of an affine web in strong general
position is

∑k0
h=1(d− rh) (see Trépreau [T], section 2). Hence we have only to prove that rh ≤ c(n, h)

in general, and rh = c(n, h) in the regular case. But this is obvious after the previous lemma, since

the dimension of Lh is exactly the rank of the matrix Ph = ((C
(h)
iL ))

i,L
with i ≤ d, |L| = h in the linear

system Σh−2 of corollary 5-3.
QED

Corollary 6.5 The bound π′(n, d) for the rank of a regular web is optimal.

Proof : Remember that a algebraic hypersurface of degree h in P′n−1 is defined in general by the data
of c(n, h)− 1 of its points : thus, the property (ii) of lemma 6-3 above is generically satisfied, so that
there exists regular affine d-webs in dimension n for any (n, d).

QED

For instance, an affine 6-web on P3 in strong general position will be special of rank 4
(
= π(3, 6)

)

or regular of rank 3
(
= π′(3, 6)

)
, according to the fact that the six points [li] belong or not to a same

conic6 of P′2 : when ψ is constant in the example (p1, q1) = (0, 0) , (p2, q2) = (a, a2) , (p3, q3) = (b, b2),
(p4, q4) = (c, c2) , (p5, q5) = (e, e2) and (p6, q6) = (h, ψ) of the previous subsection, the five first points
belong to the conic of equation q = p2, hence the dichotomy according to the fact that ψ is equal or
different of h2.

New proof of the theorem 1-1 for d ≥ c(n, 2) in the particular case of regular webs which
are in strong general position :

The rank of a web in strong general position is upper-bounded by the rank of the “tangent affine
web” at a point (see again [T]). Since the regularity of a web near a point is equivalent to the regularity

6In the special case, it is amazing to deduce the fourth abelian relation from the theorem of the hexagon (Pascal).
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of the tangent affine web at that point, theorem 1-1 is also a corollary of the previous theorem 6-4,
when the regular web is in strong general position.

QED
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