Pré-Publication, Document De Travail Année : 2008

Geodesic flow of the averaged controlled Kepler equation

Résumé

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controlled Kepler system are finally obtained thanks to the computation of the cut locus of the restriction to the sphere.
Fichier principal
Vignette du fichier
art.pdf (2.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00134702 , version 1 (05-03-2007)
hal-00134702 , version 2 (13-03-2007)
hal-00134702 , version 3 (13-06-2007)
hal-00134702 , version 4 (20-07-2007)
hal-00134702 , version 5 (21-01-2008)
hal-00134702 , version 6 (22-02-2008)

Identifiants

  • HAL Id : hal-00134702 , version 6

Citer

Bernard Bonnard, Jean-Baptiste Caillau. Geodesic flow of the averaged controlled Kepler equation. 2008. ⟨hal-00134702v6⟩
246 Consultations
494 Téléchargements

Partager

More