Polarizations of Prym varieties for Weyl groups via abelianization - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Polarizations of Prym varieties for Weyl groups via abelianization

Herbert Lange
  • Fonction : Auteur
  • PersonId : 837949

Résumé

Let $\pi: Z \ra X$ be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply-connected Lie group $G$. For any dominant weight $\lambda$ consider the curve $Y = Z/\Stab(\lambda)$. The Kanev correspondence defines an abelian subvariety $P_\lambda$ of the Jacobian of $Y$. We compute the type of the polarization of the restriction of the canonical principal polarization of $\Jac(Y)$ to $P_\lambda$ in some cases. In particular, in the case of the group $E_8$ we obtain families of Prym-Tyurin varieties. The main idea is the use of an abelianization map of the Donagi-Prym variety to the moduli stack of principal $G$-bundles on the curve $X$.
Fichier principal
Vignette du fichier
pt7.pdf (339.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00128775 , version 1 (02-02-2007)
hal-00128775 , version 2 (12-06-2007)

Identifiants

Citer

Herbert Lange, Christian Pauly. Polarizations of Prym varieties for Weyl groups via abelianization. 2007. ⟨hal-00128775v1⟩
190 Consultations
158 Téléchargements

Altmetric

Partager

More