Definition, properties and wavelet analysis of multiscale fractional Brownian motion - Archive ouverte HAL
Article Dans Une Revue Fractals Année : 2007

Definition, properties and wavelet analysis of multiscale fractional Brownian motion

Résumé

In some applications, for instance finance, biomechanics, turbulence or internet traffic, it is relevant to model data with a generalization of a fractional Brownian motion for which the Hurst parameter $H$ is depending on the frequency. In this contribution, we describe the multiscale fractional Brownian motions which present a parameter $H$ as a piecewise constant function of the frequency. We provide the main properties of these processes: long-memory and smoothness of the paths. Then we propose a statistical method based on wavelet analysis to estimate the different parameters and prove a functional Central Limit Theorem satisfied by the empirical variance of the wavelet coefficients.
Fichier principal
Vignette du fichier
fractal_062.pdf (355.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00127938 , version 1 (30-01-2007)

Identifiants

  • HAL Id : hal-00127938 , version 1

Citer

Jean-Marc Bardet, Pierre, Raphael Bertrand. Definition, properties and wavelet analysis of multiscale fractional Brownian motion. Fractals, 2007, 15 (1), pp.73-87. ⟨hal-00127938⟩
165 Consultations
402 Téléchargements

Partager

More